Skip to main content
Log in

Proving the distillability problem of two-copy \(4\times 4\) Werner states for monomial matrices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The distillability conjecture of two-copy \(4\times 4\) Werner states is one of the main open problems in quantum information (https://arxiv.org/abs/2002.03233, P. Horodecki, L. Rudnicki, and K. Zyczkowski). We prove three special cases of the conjecture in terms of the \(4\times 4\) non-normal matrices AB involved in the conjecture. The first case, namely the main result of this paper, occurs when AB are monomial matrices. Then, we apply it to the remaining two cases. One case occurs when AB both have at most two nonzero entries. The other case works for rank-one A and some rank-two B. Our results present the latest progress on the conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Thapliyal, A.V.: Evidence for bound entangled states with negative partial transpose. Phys. Rev. A 61, 062312 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Terhal, B.M.: A family of indecomposable positive linear maps based on entangled quantum states. Linear Algebra Appl. 323(1), 61–73 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Poon, E.: Preservers of maximally entangled states. Linear Algebra Appl. 468(468), 122–144 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cariello, D.: A gap for ppt entanglement. Linear Algebra Appl. 529, 1 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Hou, J., Qi, X.: Linear maps preserving separability of pure states. Linear Algebra Appl. 439(5), 1245–1257 (2013)

    Article  MathSciNet  Google Scholar 

  6. Alfsen, E., Shultz, F.: Finding decompositions of a class of separable states. Linear Algebra Appl. 437(10), 2613–2629 (2012)

    Article  MathSciNet  Google Scholar 

  7. Woerdeman, H.J.: The separability problem and normal completions. Linear Algebra Appl. 376(1), 85–95 (2004)

    Article  MathSciNet  Google Scholar 

  8. Horodecki, P., Rudnicki, L., Zyczkowski, K.: Five open problems in quantum information (2020). arXiv:2002.03233v2

  9. Pankowski, L., Piani, M., Horodecki, M., Horodecki, P.: A few steps more towards NPT bound entanglement. IEEE Trans. Inf. Theory 56(8), 4085–4100 (2010)

    Article  MathSciNet  Google Scholar 

  10. Dür, W., Cirac, J.I., Lewenstein, M., Bruß, D.: Distillability and partial transposition in bipartite systems. Phys. Rev. A 61, 062313 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Vianna, R.O., Doherty, A.C.: Distillability of Werner states using entanglement witnesses and robust semidefinite programs. Phys. Rev. A 74, 052306 (2006)

    Article  ADS  Google Scholar 

  12. Bandyopadhyay, S.: Classes of \(n\)-copy undistillable quantum states with negative partial transposition. Phys. Rev. A 68, 022319 (2003)

    ADS  Google Scholar 

  13. Chen, L., Chen, Y.X.: Rank-three bipartite entangled states are distillable. Phys. Rev. A 78, 022318 (2008)

    Article  ADS  Google Scholar 

  14. Horodecki, M., Horodecki, P., Horodecki, R.: Inseparable two spin- \(\frac{1}{2}\) density matrices can be distilled to a singlet form. Phys. Rev. Lett. 78, 574–577 (1997)

    ADS  Google Scholar 

  15. Rains, E.M.: Bound on distillable entanglement. Phys. Rev. A 60, 179 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chen, L., Djokovicá, D.Z.: Distillability and ppt entanglement of low-rank quantum states. J. Phys. A Math. Theor. 44(28), 285303 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. Chen, L., Djokovicá, D.Z.: Distillability of non-positive-partial-transpose bipartite quantum states of rank four. Phys. Rev. A 94, 052318 (2016)

    Article  ADS  Google Scholar 

  18. Pankowski, M.H.A., Piani, M., Horodecki, P.: A few steps more towards NPT bound entanglement. IEEE. Trans. Inf. Theory 56(8), 1–19 (2010)

    Article  MathSciNet  Google Scholar 

  19. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  20. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. Qian, L., Chen, L., Chu, D., Shen, Y.: A matrix inequality for entanglement distillation problem. Linear Algebra Appl. 616, 139–177 (2021)

    Article  MathSciNet  Google Scholar 

  22. Chen, L.: The tensor rank of tensor product of two three-qubit W states is eight. Linear Algebra Appl. 543, 1–16 (2018)

    Article  MathSciNet  Google Scholar 

  23. Wang, K., Chen, L., Shen, Y., Sun, Y., Zhao, L.J.: Constructing 2 \(\times \) 2 \(\times \) 4 and 4 \(\times \) 4 unextendible product bases and positive-partial-transpose entangled states. Linear Multilinear Algebra 2019, 1–16 (2019)

    Google Scholar 

  24. Liang, M., Mengyao, H., Sun, Y., Chen, L., Chen, X.: Real entries of complex hadamard matrices and mutually unbiased bases in dimension six. Linear Multilinear Algebra 2019, 1–18 (2019)

    Article  Google Scholar 

  25. De Baerdemacker, S., De Vos, A., Chen, L., Yu, L.: The Birkhoff theorem for unitary matrices of arbitrary dimensions. Linear Algebra Appl. 514, 151–164 (2017)

    Article  MathSciNet  Google Scholar 

  26. Ouyang, Y., Shen, Y., Chen, L.: Faster quantum computation with permutations and resonant couplings (2019). arXiv:1901.00252v4. Accepted by Linear Algebra and Its application

  27. Shen, Y., Chen, L.: On a matrix inequality related to the distillability problem. Entropy 20(8), 588 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors were supported by the NNSF of China (Grant Nos. 11871089 and 11947241), and the Fundamental Research Funds for the Central Universities (Grant No. ZG216S2110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixia He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

The proof of Proposition 4

We have

$$\begin{aligned} X=A\otimes I+I\otimes B= \left( \begin{array}{cccc}B&{}a_1I&{}0&{}0\\ a_2I&{}B &{}0&{}0\\ 0&{}0&{}B&{}a_3I\\ 0&{}0&{}a_4I&{}B\end{array}\right) , \end{aligned}$$

and

$$\begin{aligned} XX^\dag= & {} \left( \begin{array}{cccc}B&{}a_1I&{}0&{}0\\ a_2I&{}B &{}0&{}0\\ 0&{}0&{}B&{}a_3I\\ 0&{}0&{}a_4I&{}B\end{array}\right) \left( \begin{array}{cccc}B^\dag &{}a_2^*I&{}0&{}0\\ a_1^*I&{}B^\dag &{}0&{}0\\ 0&{}0&{}B^\dag &{}a_4^*I\\ 0&{}0&{}a_3^*I&{}B^\dag \end{array}\right) \\= & {} \left( \begin{array}{cccc}BB^\dag +|a_1|^2I&{}a_2^*B+a_1B^\dag &{}0&{}0\\ a_2B^\dag +a_1^*B&{}BB^\dag +|a_2|^2I&{}0&{}0\\ 0&{}0&{}BB^\dag +|a_3|^2I &{} a_3B^\dag +a_4^*B\\ 0&{}0&{}a_4B^t+a_3^*B&{}|a_4|^2I+BB^\dag \end{array}\right) \\= & {} \left( \begin{array}{cc}C&{}0\\ 0&{}D\end{array}\right) =C\oplus D. \end{aligned}$$

where

$$\begin{aligned}&C=\left( \begin{array}{cc}BB^\dag +|a_1|^2&{}a_2^*B+a_1B^\dag \\ a_2B^\dag +a_1^*B&{}|a_2|^2I+BB^\dag \end{array}\right) \nonumber \\&\quad =\left( \begin{array}{cccccccc}|b_1|^2+|a_1|^2&{}0&{}0&{}0&{}0&{}a_2^*b_1&{}0&{}a_1b_4^*\\ 0&{}|b_2|^2+|a_1|^2&{}0&{}0&{}a_1b_1^*&{}0&{}a_2^*b_2&{}0\\ 0&{}0&{}|b_3|^2+|a_1|^2&{}0&{}0&{}a_1b_2^*&{}0&{}a_2^*b_3\\ 0&{}0&{}0&{}|b_4|^2+|a_1|^2&{}a_2^*b_4&{}0&{}a_1b_3^*&{}0\\ 0&{}a_1^*b_1&{}0&{}a_2b_4^*&{}|b_1|^2 +|a_2|^2&{}0&{}0&{}0\\ a_2b_1^*&{}0&{}a_1^*b_2&{}0&{}0&{}|b_2|^2+|a_2|^2&{}0&{}0\\ 0&{}a_2b_2^*&{}0&{}a_1^*b_3&{}0&{}0&{}|b_3|^2 +|a_2|^2&{}\\ a_1^*b_4&{}0&{}a_2b_3^*&{}0&{}0&{}0&{}0&{}|b_4|^2 + |a_2|^2\end{array}\right) \nonumber \\&\quad \sim \left( \begin{array}{cccccccc}|b_1|^2+|a_1|^2&{}0&{}a_2^*b_1&{}a_1b_4^*&{}0&{}0&{}0&{}0\\ 0&{}|b_3|^2+|a_1|^2&{}a_1b_2^*&{}a_2^*b_3&{}0&{}0&{}0&{}0\\ a_2b_1^*&{}a_1^*b_2&{}|b_2|^2+|a_2|^2&{}0&{}0&{}0&{}0&{}0\\ a_1^*b_4&{}a_2b_3^*&{}0&{}|b_4|^2+|a_2|^2&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}|b_2|^2+|a_1|^2&{}0&{}a_1b_1^*&{}a_2^*b_2\\ 0&{}0&{}0&{}0&{}0&{}|b_4|^2+|a_1|^2&{}a_2^*b_4&{}a_1b_3^*\\ 0&{}0&{}0&{}0&{}a_1^*b_1&{}a_2b_4^*&{}|b_1|^2+|a_2|^2&{}0\\ 0&{}0&{}0&{}0&{}a_2b_2^*&{}a_1^*b_3&{}0&{}|b_3|^2+|a_2|^2\end{array}\right) \nonumber \\&\quad =C_1\oplus C_2, \end{aligned}$$
(14)

and

$$\begin{aligned}&D=\left( \begin{array}{cc}BB^\dag +|a_3|^2&{}a_4^*B+a_3B^\dag \\ a_4B^\dag +a_3^*B&{}|a_4|^2I+BB^\dag \end{array}\right) \nonumber \\&\quad \sim \left( \begin{array}{cccccccc}|b_1|^2+|a_3|^2&{}0&{}a_4^*b_1&{}a_3b_4^*&{}0&{}0&{}0&{}0\\ 0&{}|b_3|^2+|a_3|^2&{}a_3b_2^*&{}a_4^*b_3&{}0&{}0&{}0&{}0\\ a_4b_1^*&{}a_3^*b_2&{}|b_2|^2+|a_4|^2&{}0&{}0&{}0&{}0&{}0\\ a_3^*b_4&{}a_4b_3^*&{}0&{}|b_4|^2+|a_4|^2&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}|b_2|^2+|a_3|^2&{}0&{}a_3b_1^*&{}a_4^*b_2\\ 0&{}0&{}0&{}0&{}0&{}|b_4|^2+|a_3|^2&{}a_4^*b_4&{}a_3b_3^*\\ 0&{}0&{}0&{}0&{}a_3^*b_1&{}a_4b_4^*&{}|b_1|^2+|a_4|^2&{}0\\ 0&{}0&{}0&{}0&{}a_4b_2^*&{}a_3^*b_3&{}0&{}|b_3|^2+|a_4|^2\end{array}\right) \nonumber \\&\quad =D_1\oplus D_2. \end{aligned}$$
(15)

Then, we have

$$\begin{aligned} XX^\dag =C_1\oplus C_2\oplus D_1 \oplus D_2, \end{aligned}$$
(16)

and

$$\begin{aligned} \mathrm{Tr}\,C_1= & {} \mathrm{Tr}\,C_2=\sum _{j=1}^4|b_j|^2+2(|a_1|^2+|a_2|^2), \nonumber \\ \mathrm{Tr}\,D_1= & {} \mathrm{Tr}\,D_2=\sum _{j=1}^4|b_j|^2+2(|a_3|^2+|a_4|^2). \end{aligned}$$
(17)

Let \(\lambda \) and \(\mu \) be two arbitrary eigenvalues of \(XX^\dag \). Using Lemma 3, proving Conjecture 1 is equivalent to proving \(\lambda +\mu \le \frac{1}{2}\). There are three cases for \(\lambda \) and \(\mu \).

Case 1. \(\lambda \) is the eigenvalue of some \(C_i\) and \(\mu \) is the eigenvalue of some \(D_j\) for any \(i,j =1,2\).

Without loss of generality, we assume that \(\lambda \) is the eigenvalue of \(C_1\) and \(\mu \) is the eigenvalue of \(D_1\). Equation (14) implies that \(\lambda \le \mathrm{Tr}\,C_1= \sum _{j=1}^4|b_j|^2+2(|a_1|^2+|a_2|^2)\). Equation (15) implies that \(\mu \le \mathrm{Tr}\,D_1= \sum _{j=1}^4|b_j|^2+2(|a_3|^2+|a_4|^2)\). Then, \( \lambda +\mu \le 2\sum _{j=1}^4(|b_j|^2+|a_j|^2)\), Eq. (2) shows that \(\lambda +\mu \le \frac{1}{2}\).

Case 2. \(\lambda \) and \(\mu \) are the eigenvalues of same \(C_i\) or \(D_j\) .

Assume \(\lambda \) and \(\mu \) are the eigenvalue of \(C_1\), Eq. (14) implies that \(\lambda +\mu \le \mathrm{Tr}\,C_1= \sum _{j=1}^4|b_j|^2+2(|a_1|^2+|a_2|^2)\le 2[\sum _{j=1}^4(|b_j|^2+|a_j|^2)]=\frac{1}{2}\) .

Case 3. \(\lambda \) and \(\mu \) are the eigenvalues of \(C_1\) and \(C_2\) or \(D_1\) and \(D_2\).

Without loss of generality, we can assume that \(\lambda \) is the maximum eigenvalue of \(C_1\) and \(\mu \) is the maximum eigenvalue of \(C_2\). Let \(x=(x_1, x_2, x_3, x_4), y=(y_1, y_2, y_3, y_4)\) and \(\Vert x\Vert =\Vert y\Vert =1\), then

$$\begin{aligned} \begin{array}{ll} xC_1x^\dag &{}=(x_1, x_2, x_3, x_4)\left( \begin{array}{cccc}|b_1|^2+|a_1|^2&{}0&{}a_2^*b_1&{}a_1b_4^*\\ 0&{}|b_3|^2+|a_1|^2&{}a_1b_2^*&{}a_2^*b_3\\ a_2b_1^*&{}a_1^*b_2&{}|b_2|^2+|a_2|^2&{}0\\ a_1^*b_4&{}a_2b_3^*&{}0&{}|b_4|^2+|a_2|^2\end{array}\right) \left( \begin{array}{c}x_1^*\\ x_2^*\\ x_3^*\\ x_4^*\end{array}\right) \\ &{}=(|b_1|^2+|a_1|^2)|x_1|^2+(|b_3|^2+|a_1|^2)|x_2|^2\\ &{}\qquad +(|b_2|^2+|a_2|^2)|x_3|^2+(|b_4|^2+|a_2|^2)|x_4|^2\\ &{}\quad \quad +a_2b_1^*x_1^*x_3+a_1^*b_4x_1^*x_4+a_1^*b_2x_2^*x_3+a_2^*b_3x_2^*x_4\\ &{}\quad \quad +a_2^*b_1x_1x_3^*+a_1b_4^*x_1x_4^*+a_1b_2^*x_2x_3^*+a_2b_3^*x_2^*x_4\\ &{}=|b_1x_1+a_2x_3|^2+|a_1x_1+b_4x_4|^2+|a_1x_2+b_2x_3|^2+|b_3x_4+a_2x_2|^2\\ &{}\le (|b_1|^2+|a_2|^2)(|x_1|^2+|x_3|^2)+(|a_1|^2+|b_2|^2)(|x_2|^2+|x_3|^2)\\ &{}\quad +(|a_1|^2+|b_4|^2)(|x_1|^2+|x_4|^2)+(|b_3|^2+|a_2|^2)(|x_2|^2+|x_4|^2)\\ &{}=(|b_1|^2+|a_2|^2+|a_1|^2+|b_4|^2)|x_1|^2+(|a_1|^2+|b_2|^2+|a_2|^2+|b_3|^2)|x_2|^2\\ &{}\quad +(|b_1|^2+|a_2|^2+|a_1|^2+|b_2|^2)|x_3|^2+(|a_1|^2+|b_4|^2+|a_2|^2+|b_3|^2)|x_4|^2\\ &{}=k_1|x_1|^2+k_2|x_2|^2+k_3|x_3|^2+k_4|x_4|^2, \end{array}\nonumber \\ \end{aligned}$$
(18)

where \(k_1=|b_1|^2+|a_2|^2+|a_1|^2+|b_4|^2, k_2=|a_1|^2+|b_2|^2+|a_2|^2+|b_3|^2, k_3=|b_1|^2+|a_2|^2+|a_1|^2+|b_2|^2, k_4=|a_1|^2+|b_4|^2+|a_2|^2+|b_3|^2, \) we have known that \(|x_1|^2+|x_2|^2+|x_3|^2+|x_4|^2=1\), then

$$\begin{aligned} xC_1x^\dag \le k_1x_1^2+k_2x_2^2+k_3x_3^2+k_4x_4^2\le \max \limits _{i=1,\cdots , 4}\{k_1, k_2, k_3, k_4\}. \end{aligned}$$
(19)

Equation (2) shows that \(k_i\le \sum _{i=1}^4 (|a_i|^2+|b_i|^2) = \frac{1}{4}\) for \( i=1, 2, 3, 4\), this implies that the maximal eigenvalue \(\lambda \) of matrix \(C_1\) satisfies

$$\begin{aligned} \lambda \le \frac{1}{4}. \end{aligned}$$
(20)

Similarly, we have

$$\begin{aligned} \begin{array}{ll} yC_2y^\dag &{}=(y_1, y_2, y_3, y_4)\left( \begin{array}{cccc}b_2^2+a_1^2&{}0&{}a_1b_1&{}a_2b_2\\ 0&{}b_4^2+a_1^2&{}a_2b_4&{}a_1b_3\\ a_1b_1&{}a_2b_4&{}b_1^2+a_2^2&{}0\\ a_2b_2&{}a_1b_3&{}0&{}b_3^2+a_2^2\end{array}\right) \left( \begin{array}{c}y_1^*\\ y_2^*\\ y_3^*\\ y_4^*\end{array}\right) \\ &{}\le (|b_2|^2+|a_2|^2+|a_1|^2+|b_1|^2)|y_1|^2+(|a_2|^2+|b_4|^2+|a_1|^2+|b_3|^2)|y_2|^2\\ &{}\quad +(|a_1|^2+|b_1|^2+|a_2|^2+|b_4|^2)|y_3|^2+(|b_2|^2+|a_2|^2+|a_1|^2+|b_3|^2)|y_4|^2\\ &{}=l_1|y_1|^2+l_2|y_2|^2+l_3|y_3|^2+l_4|y_4|^2.\end{array}\nonumber \\ \end{aligned}$$
(21)

Since \(|y_1|^2+|y_2|^2+|y_3|^2+|y_4|^2=1, \) we have

$$\begin{aligned} yC_2y^\dag \le \max \limits _{i=1,\cdots , 4}\{l_1, l_2, l_3, l_4\}. \end{aligned}$$
(22)

From Eq. (2), we can get that \(l_i\le \sum _{i=1}^4 (|a_i|^2+|b_i|^2) = \frac{1}{4}\) for \( i=1, 2, 3, 4\), this implies that the maximal eigenvalue \(\mu \) of matrix \(C_2\) satisfying

$$\begin{aligned} \mu \le \frac{1}{4}. \end{aligned}$$
(23)

Equations (20) and (23) imply that \(\lambda +\mu \le \frac{1}{2}.\)

This completes the proof.

The proof of Proposition 5

$$\begin{aligned} X=A\otimes I+I\otimes B= & {} \left( \begin{array}{cccc}0&{}a_1I &{}0&{}0\\ 0&{}0&{}a_2I &{}0\\ 0&{}0&{}0&{}a_3I\\ a_4I&{}0 &{} 0&{}0\end{array}\right) +\left( \begin{array}{cccc}B&{}0&{}0&{}0\\ 0&{}B&{}0&{}0\\ 0&{}0&{}B&{}0\\ 0&{}0&{}0&{}B\end{array}\right) \\= & {} \left( \begin{array}{cccc}B&{}a_1I&{}0&{}0\\ 0&{}B &{} a_2I&{}0\\ 0&{}0&{}B&{}a_3I\\ a_4I &{}0&{}0&{}B\end{array}\right) , \\ XX^\dag= & {} \left( \begin{array}{cccc}B&{}a_1I&{}0&{}0\\ 0&{}B &{} a_2I&{}0\\ 0&{}0&{}B&{}a_3I\\ a_4I &{}0&{}0&{}B\end{array}\right) \left( \begin{array}{cccc}B^\dag &{}0&{}0&{}a_4^*I\\ a_1^*I&{}B^\dag &{}0&{}0\\ 0&{}a_2^*I &{}B^\dag &{}0\\ 0&{}0&{}a_3^*I&{}B^\dag \end{array}\right) \\= & {} \left( \begin{array}{cccc}BB^\dag +|a_1|^2I&{}a_1B^\dag &{}0&{}a_4^*B\\ a_1^*B&{}BB^\dag +|a_2|^2I&{}a_2B^\dag &{}0\\ 0&{}a_2^*B&{}BB^\dag +|a_3|^2I &{} a_3B^\dag \\ a_4B^\dag &{}0&{}a_3^*B&{}|a_4|^2I+BB^\dag \end{array}\right) \\= & {} \left( \begin{array}{ll}Y_1&{}Y_2\\ Y_2^\dag &{}Y_3\end{array}\right) , \end{aligned}$$

where

$$\begin{aligned}&Y_1=\left( \begin{array}{cc}BB^\dag +|a_1|^2I&{}a_1B^\dag \\ a_1^*B&{}|a_2|^2I+BB^\dag \end{array}\right) \\&\quad =\left( \begin{array}{cccccccc}|b_1|^2+|a_1|^2&{}0&{}0&{}0&{}0&{}0&{}0&{}a_1b_4^*\\ 0&{}|b_2|^2+|a_1|^2&{}0&{}0&{}a_1b_1^*&{}0&{}0&{}0\\ 0&{}0&{}|b_3|^2+|a_1|^2&{}0&{}0&{}a_1b_2^*&{}0&{}0\\ 0&{}0&{}0&{}|b_4|^2+|a_1|^2&{}0&{}0&{}a_1b_3^*&{}0\\ 0&{}a_1^*b_1&{}0&{}0&{}|b_1|^2 +|a_2|^2&{}0&{}0&{}0\\ 0&{}0&{}a_1^*b_2&{}0&{}0&{}|b_2|^2+|a_2|^2&{}0&{}0\\ 0&{}0&{}0&{}a_1^*b_3&{}0&{}0&{}|b_3|^2 +|a_2|^2&{}0\\ a_1^*b_4&{}0&{}0&{}0&{}0&{}0&{}0&{}|b_4|^2 + |a_2|^2\end{array}\right) \\&\quad =P \left( \begin{array}{cccccccc}|b_1|^2+|a_1|^2&{}a_1b_4^*&{}0&{}0&{}0&{}0&{}0&{}0\\ a_1^*b_4&{}|b_4|^2+|a_2|^2&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}|b_2|^2+|a_1|^2&{}a_1b_1^*&{}0&{}0&{}0&{}0\\ 0&{}0&{}a_1^*b_1&{}|b_1|^2+|a_2|^2&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}|b_3|^2+|a_1|^2&{}a_1b_2^*&{}0&{}0\\ 0&{}0&{}0&{}0&{}a_1^*b_2&{}|b_2|^2+|a_2|^2&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}|b_4|^2+|a_1|^2&{}a_1b_3^*\\ 0&{}0&{}0&{}0&{}0&{}0&{}a_1^*b_3&{}|b_3|^2+|a_2|^2\end{array}\right) P^\dag , \end{aligned}$$

where P is a permutation. We have

$$\begin{aligned}&Y_2=\left( \begin{array}{cc}0&{}a_4^*B\\ a_2B^\dag &{}0\end{array}\right) =\left( \begin{array}{cccccccc}0&{}0&{}0&{}0&{}0&{}a_4^*b_1&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}a_4^*b_2&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}a_4^*b_3\\ 0&{}0&{}0&{}0&{}a_4^*b_4&{}0&{}0&{}0\\ 0&{}0&{}0&{}a_2b_4^*&{}0&{}0&{}0&{}0\\ a_2b_1^*&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}a_2b_2^*&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}a_2b_3^*&{}0&{}0&{}0&{}0&{}0\end{array}\right) \\&\quad =P\left( \begin{array}{cccccccc}0&{}0&{}0&{}0&{}0&{}a_4^*b_1&{}0&{}0\\ 0&{}0&{}0&{}0&{}a_2b_3^*&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}a_4^*b_2\\ 0&{}0&{}0&{}0&{}0&{}0&{}a_2b_4^*&{}0\\ 0&{}a_4^*b_3&{}0&{}0&{}0&{}0&{}0&{}0\\ a_2b_1^*&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}a_4^*b_4&{}0&{}0&{}0&{}0\\ 0&{}0&{}a_2b_2^*&{}0&{}0&{}0&{}0&{}0\end{array}\right) P^t, \\&Y_3=\left( \begin{array}{cc}BB^\dag +|a_3|^2I&{}a_3B^\dag \\ a_3^*B&{}|a_4|^2I+BB^\dag \end{array}\right) \\&\quad =P \left( \begin{array}{cccccccc}|b_1|^2+|a_3|^2&{}a_3b_4^*&{}0&{}0&{}0&{}0&{}0&{}0\\ a_3^*b_4&{}|b_4|^2+|a_4|^2&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}|b_2|^2+|a_3|^2&{}a_3b_1^*&{}0&{}0&{}0&{}0\\ 0&{}0&{}a_3^*b_1&{}|b_1|^2+|a_4|^2&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}|b_3|^2+|a_3|^2&{}a_3b_2^*&{}0&{}0\\ 0&{}0&{}0&{}0&{}a_3^*b_2&{}|b_2|^2+|a_4|^2&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}|b_4|^2+|a_3|^2&{}a_3b_3^*\\ 0&{}0&{}0&{}0&{}0&{}0&{}a_3^*b_3&{}|b_3|^2+|a_4|^2\end{array}\right) P^t. \end{aligned}$$

Here we can see that

$$\begin{aligned}&XX^\dag \sim \left( \begin{array}{cccccccc}N_1&{}0&{}0&{}0&{}0&{}0&{}N_2&{}0\\ 0&{}N_3&{}0&{}0&{}0&{}0&{}0&{}N_4\\ 0&{}0&{}N_5&{}0&{}N_6&{}0&{}0&{}0\\ 0&{}0&{}0&{}N_7&{}0&{}N_8&{}0&{}0\\ 0&{}0&{}N_6^\dag &{}0&{}N_9&{}0&{}0&{}0\\ 0&{}0&{}0&{}N_8^\dag &{}0&{}N_{10}&{}0&{}0\\ N_2^\dag &{}0&{}0&{}0&{}0&{}0&{}N_{11}&{}0\\ 0&{}N_4^\dag &{}0&{}0&{}0&{}0&{}0&{}N_{12}\end{array}\right) \nonumber \\&\quad \sim \left( \begin{array}{cccccccc}N_1&{}N_2&{}0&{}0&{}0&{}0&{}0&{}0\\ N_2^\dag &{}N_{11}&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}N_3&{}N_4&{}0&{}0&{}0&{}0\\ 0&{}0&{}N_4^\dag &{}N_{12}&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}N_5&{}N_6&{}0&{}0\\ 0&{}0&{}0&{}0&{}N_6^\dag &{}N_9&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}N_7&{}N_8\\ 0&{}0&{}0&{}0&{}0&{}0&{}N_8^\dag &{}N_{10} \end{array}\right) =W, \end{aligned}$$
(24)

where \(N_i, i=1, 2,\dots , 12\) are \(2\times 2\) matrices. Then

$$\begin{aligned} XX^\dag \sim W=W_1\oplus W_2\oplus W_3 \oplus W_4, \end{aligned}$$
(25)

where

$$\begin{aligned} W_1=\left( \begin{array}{cc}N_1&{}N_2\\ N_2^\dag &{}N_{11}\end{array}\right) =\left( \begin{array}{cccc}|b_1|^2+|a_1|^2&{}a_1b_4^*&{}0&{}a_4^*b_1\\ a_1^*b_4&{}|b_4|^2+|a_2|^2&{}a_2b_3^*&{}0\\ 0&{}a_2^*b_3&{}|b_3|^2+|a_3|^2&{}a_3b_2^*\\ a_4b_1^*&{}0&{}a_3^*b_2&{}|b_2|^2+|a_4|^2\end{array}\right) , \end{aligned}$$
(26)
$$\begin{aligned} W_2=\left( \begin{array}{cc}N_3&{}N_4\\ N_4^t&{}N_{12}\end{array}\right) =\left( \begin{array}{cccc}|b_2|^2+|a_1|^2&{}a_1b_1^*&{}0&{}a_4^*b_2\\ a_1^*b_1&{}|b_1|^2+|a_2|^2&{}a_2b_4^*&{}0\\ 0&{}a_2^*b_4&{}|b_4|^2+|a_3|^2&{}a_3^*b_3\\ a_4b_2^*&{}0&{}a_3b_3^*&{}|b_3|^2+|a_4|^2\end{array}\right) , \end{aligned}$$
(27)
$$\begin{aligned} W_3=\left( \begin{array}{cc}N_5&{}N_6\\ N_6^t&{}N_{9}\end{array}\right) =\left( \begin{array}{cccc}|b_3|^2+|a_1|^2&{}a_1b_2^*&{}0&{}a_4^*b_3\\ a_1^*b_2&{}|b_2|^2+|a_2|^2&{}a_2b_1^*&{}0\\ 0&{}a_2^*b_1&{}|b_1|^2+|a_3|^2&{}a_3b_4^*\\ a_4b_3^*&{}0&{}a_3^*b_4&{}|b_4|^2+|a_4|^2\end{array}\right) , \end{aligned}$$
(28)
$$\begin{aligned} W_4=\left( \begin{array}{cc}N_7&{}N_8\\ N_8^t&{}N_{10}\end{array}\right) =\left( \begin{array}{cccc}|b_4|^2+|a_1|^2&{}a_1b_3^*&{}0&{}a_4^*b_4\\ a_1^*b_3&{}|b_3|^2+|a_2|^2&{}a_2b_2^*&{}0\\ 0&{}a_2^*b_2&{}|b_2|^2+|a_3|^2&{}a_3b_1^*\\ a_4b_4^*&{}0&{}a_3^*b_1&{}|b_1|^2+|a_4|^2\end{array}\right) ,\end{aligned}$$
(29)

and

$$\begin{aligned} \mathrm{Tr}\,W_i=\sum _{j=1}^4(|b_j|^2+|a_j|^2)=\frac{1}{4}, i=1,2,3,4. \end{aligned}$$
(30)

Let \(\lambda \) and \(\mu \) be two arbitrary eigenvalues of \(XX^\dag \). Then, proving Conjecture 1 is equivalent to proving \(\lambda +\mu \le \frac{1}{2}\). There are two cases for \(\lambda \) and \(\mu \).

Case 1. \(\lambda \) and \(\mu \) are the eigenvalues of different \(W_i\).

Without loss of generality, we can assume that \(\lambda \) is the maximum eigenvalue of \(W_i\), and \(\mu \) is the maximum eigenvalue of \(W_j\), \(1\le i, j\le 4, i\ne j\). \(\lambda +\mu \le \mathrm{Tr}\,W_i+\mathrm{Tr}\,W_j= 2[\sum _{j=1}^4(|b_j|^2+|a_j|^2)]=\frac{1}{2}\) .

Case 2. \(\lambda \) and \(\mu \) are the eigenvalues of same \(W_i, i=1, 2, 3, 4\). Equation (30) implies that \(\lambda +\mu \le \mathrm{Tr}\,W_i= \sum _{j=1}^4(|b_j|^2+|a_j|^2)=\frac{1}{4}\).

This completes the proof.

The proof of Proposition 6

$$\begin{aligned} X= & {} A\otimes I+I\otimes B=\left( \begin{array}{cccc}a_1I &{}0&{}0 &{}0\\ 0&{}-a_1I&{}0&{}0\\ 0&{}0&{}0&{}a_2I\\ 0&{}0 &{} a_3I&{}0\end{array}\right) +\left( \begin{array}{cccc}B&{}0&{}0&{}0\\ 0&{}B&{}0&{}0\\ 0&{}0&{}B&{}0\\ 0&{}0&{}0&{}B\end{array}\right) \\= & {} \left( \begin{array}{cccc}a_1I+B&{}0&{}0&{}0\\ 0&{}-a_1I+B &{}0&{}0\\ 0&{}0&{}B&{}a_2I\\ 0&{}0&{}a_3I&{}B\end{array}\right) . \end{aligned}$$

So we have

$$\begin{aligned} \begin{array}{lll} XX^\dag &{}= &{} \left( \begin{array}{cccc}a_1I+B&{}0&{}0&{}0\\ 0&{}-a_1I+B &{}0&{}0\\ 0&{}0&{}B&{}a_2I\\ 0&{}0&{}a_3I&{}B\end{array}\right) \left( \begin{array}{cccc}a_1^*I+B^\dag &{}0&{}0&{}0\\ 0&{}-a_1^*I+B^\dag &{}0&{}0\\ 0&{}0&{}B^\dag &{}a_3^*I\\ 0&{}0&{}a_2^*I&{}B^\dag \end{array}\right) \\ &{}=&{}\left( \begin{array}{cccc}BB^\dag +|a_1|^2I+a_1B^\dag +a_1^*B&{}0&{}0&{}0\\ 0&{}BB^\dag -a_1^*B-a_1B^\dag +|a_1|^2I&{}0&{}0\\ 0&{}0&{}BB^\dag +|a_2|^2I &{} a_2B^\dag +a_3^*B\\ 0&{}0&{}a_3B^\dag +a_2^*B&{}|a_3|^2I+BB^\dag \end{array}\right) \\ &{}=&{}\left( \begin{array}{cc}C&{}0\\ 0&{}D\end{array}\right) =C\oplus D,\end{array} \end{aligned}$$

where

$$\begin{aligned}&C=\left( \begin{array}{cc}BB^\dag +|a_1|^2I+a_1B^\dag +a_1^*B&{}0\\ 0&{}BB^\dag -a_1^*B-a_1B^\dag +|a_1|^2I \end{array}\right) \nonumber \\&=C_1\oplus C_2\oplus C_3\oplus C_4, \nonumber \\&C_1= \left( \begin{array}{cc} |b_1+a_1|^2&{}0\\ 0&{}|b_1-a_1|^2 \end{array}\right) , \nonumber \\&C_2= \left( \begin{array}{cc} |b_2|^2+|a_1|^2&{}a_1^*b_2+a_1b_3^*\\ a_1^*b_3+a_1b_2^*&{}|b_3|^2+|a_1|^2\end{array}\right) , \nonumber \\&C_3= \left( \begin{array}{cc} |b_1-a_1|^2&{}0\\ 0&{}|b_1+a_1|^2\end{array}\right) , \nonumber \\&C_4=\left( \begin{array}{cc} |b_2|^2 +|a_1|^2&{}-a_1^*b_2-a_1b_3^*\\ -a_1b_2^*-a_1^*b_3&{}|b_3|^2 + |a_1|^2\end{array}\right) , \end{aligned}$$
(31)

and

$$\begin{aligned}&D=\left( \begin{array}{cc}BB^\dag +|a_2|^2I&{}a_3^*B+a_2B^\dag \\ a_3B^\dag +a_2^*B&{}|a_3|^2I+BB^\dag \end{array}\right) \nonumber \\&\quad =\left( \begin{array}{cccccccc}|b_1|^2+|a_2|^2&{}0&{}0&{}0&{}a_3^*b_1+a_2b_1^*&{}0&{}0&{}0\\ 0&{}|b_1|^2+|a_2|^2&{}0&{}0&{}0&{}-b_1^*a_2-b_1a_3^*&{}0&{}0\\ 0&{}0&{}|b_2|^2+|a_2|^2&{}0&{}0&{}0&{}0&{}a_3^*b_2+a_2b_3^*\\ 0&{}0&{}0&{}|b_3|^2+|a_2|^2&{}0&{}0&{}a_3^*b_3+a_2b_2^*&{}0\\ a_3b_1^*+a_2^*b_1&{}0&{}0&{}0&{}|b_1|^2 +|a_3|^2&{}0&{}0&{}0\\ 0&{}-b_1a_2^*-b_1^*a_3&{}0&{}0&{}0&{}|a_3|^2+|b_1|^2&{}0&{}0\\ 0&{}0&{}0&{}a_3b_3^*+a_2^*b_2&{}0&{}0&{}|b_2|^2+|a_3|^2&{}0\\ 0&{}0&{}a_3b_2^*+a_2^*b_3&{}0&{}0&{}0&{}0&{}|b_3|^2 + |a_3|^2\end{array}\right) \nonumber \\&\quad \sim \left( \begin{array}{cccccccc}|b_1|^2+|a_2|^2&{}a_3^*b_1+a_2b_1^*&{}0&{}0&{}0&{}0&{}0&{}0\\ a_3b_1^*+a_2^*b_1&{}|b_1|^2+|a_3|^2&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}|b_1|^2+|a_2|^2&{}-b_1^*a_2-b_1a_3^*&{}0&{}0&{}0&{}0\\ 0&{}0&{}-b_1a_2^*-b_1^*a_3&{}|b_1|^2+|a_3|^2&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}|b_2|^2+|a_2|^2&{}a_3b_2^*+a_2^*b_3&{}0&{}0\\ 0&{}0&{}0&{}0&{}a_3^*b_2+a_2b_3^*&{}|b_3|^2+|a_3|^2&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}|b_3|^2+|a_2|^2&{}a_3^*b_3+a_2b_2^*\\ 0&{}0&{}0&{}0&{}0&{}0&{}a_3b_3^*+a_2^*b_2&{}|b_2|^2+|a_3|^2\end{array}\right) \nonumber \\&\quad =D_1\oplus D_2\oplus D_3\oplus D_4. \end{aligned}$$
(32)

One can formulate the characteristic polynomial of C as follows.

$$\begin{aligned} \det (\lambda I-C)=f_1^2(\lambda )\cdot f_2^2(\lambda ), \end{aligned}$$
(33)

where

$$\begin{aligned} \begin{array}{lll} f_1(\lambda )&{}=&{}(|b_1|^2+|a_2|^2+2Re a_1^*b_1-\lambda )(|b_1|^2+|a_2|^2-2Re a_1^*b_1-\lambda ),\\ f_2(\lambda )&{}=&{}(|b_2|^2+|a_1|^2-\lambda )(|a_1|^2+|b_3|^2-\lambda )-|a_1^*b_2+a_1b_3^*|^2,\\ \end{array} \end{aligned}$$
(34)

and Rez denotes the real part of the complex number z.

We first claim the larger root of \(f_i(\lambda )=0, \forall i=1,2,3,4\), is not greater than \(\frac{1}{4}\).Take \(f_1(\lambda )\) as an example. It is clear that the sum of the two roots of \(f_1(\lambda )=0\) is \(|a_1|^2+|a_2|^2+2|b_1|^2\). Since \(XX^t=C\oplus D\) is a semipositive definite matrix. All the eigenvalues of C and D are non-negative. This implies that all the roots of \(f_i(\lambda )=0, i=1, 2\) are nonnegative. So we have the larger root of \(f_1(\lambda )=0\) is not greater than the sum of two roots, i.e., \(|a_1|^2+|a_2|^2+2|b_1|^2\). Recall the \(\sum _{i=1}^3(|a_i|^2+|b_i|^2)+|a_1|^2+|b_1|^2=\frac{1}{4}.\) Therefore, we conclude that the larger root of \(f_1(\lambda )=0\) is not larger than \(\frac{1}{4}.\) One can draw the same conclusion of \(f_2(\lambda )\). Then, our claim holds.

This implies the largest eigenvalue of C is not greater than \(\frac{1}{4}.\)

The characteristic polynomial of D can be expressed as follows:

$$\begin{aligned} \det (\lambda I-D)=g_1 (\mu )\cdot g_2(\mu )\cdot g_3(\mu )\cdot g_3(\mu ), \end{aligned}$$
(35)

where

$$\begin{aligned} \begin{array}{lll} g_1(\mu )&{}=&{}(|b_1|^2+|a_2|^2-\mu )(|a_3|^2+|b_1|^2-\mu )-|a_3^*b_1+a_2b_1^*|^2,\\ g_2(\mu )&{}=&{}(|b_1|^2+|a_2|^2-\mu )(|a_3|^2+|b_1|^2-\mu )-|b_1^*a_2+b_1a_3^*|^2,\\ g_3(\mu )&{}=&{}(|b_2|^2+|a_2|^2-\mu )(|a_3|^2+|b_3|^2-\mu )-|a_3b_2^*+a_2^*b_3|^2,\\ g_4(\mu )&{}=&{}(|b_3|^2+|a_2|^2-\mu )(|a_3|^2+|b_2|^2-\mu )-|a_3^*b_3+a_2b_2^*|^2. \end{array} \end{aligned}$$
(36)

By the same way, we conclude that the largest eigenvalue of D is not greater than \(\frac{1}{4}.\) Since \(XX^t=C\oplus D\), the sum of the largest eigenvalues of \(XX^t\) is at most \(\frac{1}{2}\). This complete the proof.

The proof of Proposition 7

$$\begin{aligned} \begin{array}{lll}X&{}=&{}A\otimes I+I\otimes B=\left( \begin{array}{cccc}a_1I &{}0&{}0 &{}0\\ 0&{}-a_1I&{}0&{}0\\ 0&{}0&{}0&{}a_2I\\ 0&{}0 &{} a_3I&{}0\end{array}\right) +\left( \begin{array}{cccc}B&{}0&{}0&{}0\\ 0&{}B&{}0&{}0\\ 0&{}0&{}B&{}0\\ 0&{}0&{}0&{}B\end{array}\right) \\ &{}=&{}\left( \begin{array}{cccc}a_1I+B&{}0&{}0&{}0\\ 0&{}-a_1I+B &{}0&{}0\\ 0&{}0&{}B&{}a_2I\\ 0&{}0&{}a_3I&{}B\end{array}\right) . \end{array} \end{aligned}$$

Hence

$$\begin{aligned} \begin{array}{lll}XX^\dag &{}= &{} \left( \begin{array}{cccc}a_1I+B&{}0&{}0&{}0\\ 0&{}-a_1I+B &{}0&{}0\\ 0&{}0&{}B&{}a_2I\\ 0&{}0&{}a_3I&{}B\end{array}\right) \left( \begin{array}{cccc}a_1^*I+B^\dag &{}0&{}0&{}0\\ 0&{}-a_1^*I+B^\dag &{}0&{}0\\ 0&{}0&{}B^\dag &{}a_3^*I\\ 0&{}0&{}a_2^*I&{}B^\dag \end{array}\right) \\ &{}=&{}\left( \begin{array}{cccc}BB^\dag +|a_1|^2I+a_1B^\dag +a_1^*B&{}0&{}0&{}0\\ 0&{}BB^\dag -a_1^*B-a_1B^\dag +|a_1|^2I&{}0&{}0\\ 0&{}0&{}BB^\dag +|a_2|^2I &{} a_2B^\dag +a_3^*B\\ 0&{}0&{}a_3B^\dag +a_2^*B&{}|a_3|^2I+BB^\dag \end{array}\right) \\ &{}=&{}\left( \begin{array}{cc}C&{}0\\ 0&{}D\end{array}\right) =C\oplus D,\end{array} \end{aligned}$$

where

$$\begin{aligned}&C=\left( \begin{array}{cc}BB^\dag +|a_1|^2I+a_1^*B+a_1B^\dag )&{}0\\ 0&{}BB^\dag +|a_1|^2I-a_1^*B-a_1B^\dag \end{array}\right) \nonumber \\&\quad =\left( \begin{array}{cccccccc}|b_1|^2+|a_1|^2&{}a_1^*b_1&{}0&{}a_1b_4^*&{}0&{}0&{}0&{}0\\ a_1b_1^*&{}|b_2|^2+|a_1|^2&{}a_1^*b_2&{}0&{}0&{}0&{}0&{}0\\ 0&{}a_1b_2^*&{}|b_3|^2+|a_1|^2&{}a_1^*b_3&{}0&{}&{}0&{}0\\ a_1^*b_4&{}0&{}a_1b_3^*&{}|b_4|^2+|a_1|^2&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}|b_1|^2 +|a_1|^2&{}-a_1^*b_1&{}0&{}-a_1b_4^*\\ 0&{} 0&{}0&{}0&{}-a_1b_1^*&{}|b_2|^2+|a_1|^2&{}-a_1^*b_2&{}0\\ 0&{}0&{}0&{}0&{}0&{}-a_1b_2^*&{}|b_3|^2 +|a_1|^2&{}-a_1^*b_3\\ 0&{}0&{}0&{}0&{}-a_1^*b_4&{}0&{}-a_1b_3^*&{}|b_4|^2 +|a_1|^2\end{array}\right) \nonumber \\&\quad =C_1\oplus C_2, \end{aligned}$$
(37)

and

$$\begin{aligned}&D=\left( \begin{array}{cc}BB^\dag +|a_2|^2I&{}a_3^*B+a_2B^\dag \\ a_3B^\dag +a_2^*B&{}|a_3|^2I+BB^\dag \end{array}\right) \nonumber \\&\quad =\left( \begin{array}{cccccccc}|b_1|^2+|a_2|^2&{}0&{}0&{}0&{}0&{}a_3^*b_1&{}0&{}a_2b_4^*\\ 0&{}|b_2|^2+|a_2|^2&{}0&{}0&{}a_2b_1^*&{}0&{}a_3^*b_2&{}0\\ 0&{}0&{}|b_3|^2+|a_2|^2&{}0&{}0&{}a_2b_2^*&{}0&{}a_3^*b_3\\ 0&{}0&{}0&{}|b_4|^2+|a_2|^2&{}a_3^*b_4&{}0&{}a_2b_3^*&{}0\\ 0&{}a_2^*b_1&{}0&{}a_3b_4^*&{}|b_1|^2 +|a_3|^2&{}0&{}0&{}0\\ a_3b_1^*&{}0&{}a_2^*b_2&{}0&{}0&{}|b_2|^2+|a_3|^2&{}0&{}0\\ 0&{}a_3b_2^*&{}0&{}a_2^*b_3&{}0&{}0&{}|b_3|^2 +|a_3|^2&{}\\ a_2^*b_4&{}0&{}a_3b_3^*&{}0&{}0&{}0&{}0&{}|b_4|^2 + |a_3|^2\end{array}\right) \nonumber \\&\quad \sim \left( \begin{array}{cccccccc}|b_1|^2+|a_2|^2&{}0&{}a_3^*b_1&{}a_2b_4^*&{}0&{}0&{}0&{}0\\ 0&{}|b_3|^2+|a_2|^2&{}a_2b_2^*&{}a_3^*b_3&{}0&{}0&{}0&{}0\\ a_3b_1^*&{}a_2^*b_2&{}|b_2|^2+|a_3|^2&{}0&{}0&{}0&{}0&{}0\\ a_2^*b_4&{}a_3b_3^*&{}0&{}|b_4|^2+|a_3|^2&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}|b_2|^2+|a_2|^2&{}0&{}a_2b_1^*&{}a_3^*b_2\\ 0&{}0&{}0&{}0&{}0&{}|b_4|^2+|a_2|^2&{}a_3^*b_4&{}a_2b_3^*\\ 0&{}0&{}0&{}0&{}a_2^*b_1&{}a_3b_4^*&{}|b_1|^2+|a_3|^2&{}0\\ 0&{}0&{}0&{}0&{}a_3b_2^*&{}a_2^*b_3&{}0&{}|b_3|^2+|a_3|^2\end{array}\right) \nonumber \\&\quad =D_1\oplus D_2. \end{aligned}$$
(38)

Then, we have

$$\begin{aligned} XX^t\sim C_1\oplus C_2\oplus D_1 \oplus D_2, \end{aligned}$$
(39)

and

$$\begin{aligned} \mathrm{Tr}\,C_1=\mathrm{Tr}\,C_2=\sum _{j=1}^4|b_j|^2+4|a_1|^2, \mathrm{Tr}\,D_1=\mathrm{Tr}\,D_2=\sum _{j=1}^4|b_j|^2+2(|a_2|^2+|a_3|^2).\nonumber \\ \end{aligned}$$
(40)

Let \(\lambda \) and \(\mu \) be two arbitrary eigenvalues of \(XX^t\). Then, proving Conjecture 1 is equivalent to proving \(\lambda +\mu \le \frac{1}{2}\). There are three cases for \(\lambda \) and \(\mu \).

Case 1. \(\lambda \) is the eigenvalue of some \(C_i\) and \(\mu \) is the eigenvalue of some \(D_j\) for any \(i,j =1,2\).

Without loss of generality, we assume \(\lambda \) is the eigenvalue of \(C_1\) and \(\mu \) is the eigenvalue of \(D_1\). Equations (37) and (40) imply that \(\lambda \le \mathrm{Tr}\,C_1= \sum _{j=1}^4|b_j|^2+4|a_1|^2\). Equations (38) and (40) imply that \(\mu \le \mathrm{Tr}\,D_1= \sum _{j=1}^4|b_j|^2+2(|a_2^2+|a_3|^2)\). Then \( \lambda +\mu \le 2\sum _{j=1}^3(|b_j|^2+|a_j|^2)+2|a_1|^2+2|b_4|^2\), Eq. (7) shows that \(\lambda +\mu \le \frac{1}{2}\).

Case 2. \(\lambda \) and \(\mu \) are the eigenvalues of same \(C_i\) or \(D_j\) .

Assume \(\lambda \) and \(\mu \) are the eigenvalue of \(C_1\), Eq. (40) implies that \(\lambda +\mu \le \mathrm{Tr}\,C_1= \sum _{j=1}^4|b_j|^2+4|a_1|^2\le 2[\sum _{j=1}^3(|b_j|^2+|a_j|^2)+|a_1|^2+|b_4|^2]=\frac{1}{2}\) .

Case 3. \(\lambda \) and \(\mu \) are the eigenvalues of \(C_1\) and \(C_2\) or \(D_1\) and \(D_2\).

Without loss of generality, we assume that \(\lambda \) is the maximum eigenvalue of \(C_1\) and \(\mu \) is the maximum eigenvalue of \(C_2\).

Let \(x=(x_1, x_2, x_3, x_4), y=(y_1, y_2, y_3, y_4)\) and \(\Vert x\Vert =\Vert y\Vert =1\), then

$$\begin{aligned} \begin{array}{ll} xC_1x^t&{}=(x_1, x_2, x_3, x_4)\left( \begin{array}{cccc}|b_1|^2+|a_1|^2&{}a_1^*b_1&{}0&{}a_1b_4^*\\ a_1b_1^*&{}|b_2|^2+|a_1|^2&{}a_1^*b_2&{}0\\ 0&{}a_1b_2^*&{}|b_3|^2+|a_2|^2&{}a_1^*b_3\\ a_1^*b_4&{}0&{}a_1b_3^*&{}|b_4|^2+|a_1|^2\end{array}\right) \left( \begin{array}{c}x_1^*\\ x_2^*\\ x_3^*\\ x_4^*\end{array}\right) \\ &{}=|b_1x_1+a_1x_2|^2+|a_1x_1+b_4x_4|^2+|a_1x_3+b_2x_2|^2+|b_3x_3+a_1x_4|^2\\ &{}\le (|b_1|^2+|a_1|^2)(|x_1|^2+|x_2|^2)+(|a_1|^2+|b_4|^2)(|x_1|^2+|x_4|^2)+(|a_1|^2+|b_2|^2)(|x_2|^2+|x_3|^2)\\ &{}\quad +(|b_3|^2+|a_1|^2)(|x_3|^2+|x_4|^2)\\ &{}=(|b_1|^2+2|a_1|^2+|b_4|^2)|x_1|^2+(2|a_1|^2+|b_1|^2+|b_2|^2)|x_2|^2+(|b_2|^2+|b_3|^2+2|a_1|^2)|x_3|^2\\ &{}\quad +(2|a_1|^2+|b_3|^2+|b_4|^2)|x_4|^2\end{array}.\nonumber \\ \end{aligned}$$
(41)

Set \(k_1=|b_1|^2+2|a_1|^2+|b_4|^2, k_2=2|a_1|^2+|b_1|^2+|b_2|^2, k_3=|b_2|^2+|b_3|^2+2|a_1|^2, k_4=2|a_1|^2+|b_3|^2+|b_4|^2, \) we have known that \(|x_1|^2+|x_2|^2+|x_3|^2+|x_4|^2=1\), then

$$\begin{aligned} xC_1x^t\le k_1|x_1|^2+k_2|x_2|^2+k_3|x_3|^2+k_4|x_4|^2\le \max \limits _{i=1,\cdots , 4}\{k_1, k_2, k_3, k_4\}. \end{aligned}$$
(42)

Equation (2) shows that \(k_i\le \sum _{i=1}^3 (|a_i|^2+|b_i|^2) +|a_1|^2+|b_4|^2= \frac{1}{4}\) for \( i=1, 2, 3, 4\), this implies that the maximal eigenvalue \(\lambda \) of matrix \(C_1\) satisfying

$$\begin{aligned} \lambda \le \frac{1}{4}. \end{aligned}$$
(43)

By the same way, we can show that the maximal eigenvalue \(\mu \) of matrix \(C_2\) satisfying

$$\begin{aligned} \mu \le \frac{1}{4}. \end{aligned}$$
(44)

Equations (43) and (44) imply that \(\lambda +\mu \le \frac{1}{2}.\)

This completes the proof.

The proof of Proposition 8

$$\begin{aligned} \begin{array}{lll}X&{}=&{}A\otimes I+I\otimes B=\left( \begin{array}{cccc}a_1I &{}0&{}0 &{}0\\ 0&{}-a_1I&{}0&{}0\\ 0&{}0&{}0&{}a_2I\\ 0&{}0 &{} a_3I&{}0\end{array}\right) +\left( \begin{array}{cccc}B&{}0&{}0&{}0\\ 0&{}B&{}0&{}0\\ 0&{}0&{}B&{}0\\ 0&{}0&{}0&{}B\end{array}\right) \\ &{}=&{}\left( \begin{array}{cccc}a_1I+B&{}0&{}0&{}0\\ 0&{}-a_1I+B &{}0&{}0\\ 0&{}0&{}B&{}a_2I\\ 0&{}0&{}a_3I&{}B\end{array}\right) . \end{array} \end{aligned}$$

We have

$$\begin{aligned} \begin{array}{lll}XX^\dag &{}= &{} \left( \begin{array}{cccc}a_1I+B&{}0&{}0&{}0\\ 0&{}-a_1I+B &{}0&{}0\\ 0&{}0&{}B&{}a_2I\\ 0&{}0&{}a_3I&{}B\end{array}\right) \left( \begin{array}{cccc}a_1^*I+B^\dag &{}0&{}0&{}0\\ 0&{}-a_1^*I+B^\dag &{}0&{}0\\ 0&{}0&{}B^\dag &{}a_3^*I\\ 0&{}0&{}a_2^*I&{}B^\dag \end{array}\right) \\ &{}=&{}\left( \begin{array}{cccc}BB^\dag +|a_1|^2I+a_1B^\dag +a_1^*B&{}0&{}0&{}0\\ 0&{}BB^\dag -a_1^*B-a_1B^\dag +|a_1|^2I&{}0&{}0\\ 0&{}0&{}BB^\dag +|a_2|^2I &{} a_2B^\dag +a_3^*B\\ 0&{}0&{}a_3B^\dag +a_2^*B&{}|a_3|^2I+BB^\dag \end{array}\right) ,\\ &{}=&{}C\oplus D.\end{array} \end{aligned}$$

where

$$\begin{aligned}&C=C_1\oplus C_2, \\&C_1=\left( \begin{array}{cccc} |a_1|^2+|b_1|^2&{}a_1b_2^*+a_1^*b_1&{}0&{}0\\ a_1b_1^*+a_1^*b_2&{}|a_1|^2+|b_2|^2&{}0&{}0\\ 0&{}0&{}|a_1|^2+|b_3|^2&{}a_1b_4^*+a_1^*b_3\\ 0&{}0&{}a_1b_3^*+a_1^*b_4&{}|a_1|^2+|b_4|^2\end{array}\right) , \\&C_2=\left( \begin{array}{cccc} |a_1|^2+|b_1|^2&{}a_1b_2^*-a_1^*b_1&{}0&{}0\\ a_1b_1^*-a_1^*b_2&{}|a_1|^2+|b_2|^2&{}0&{}0\\ 0&{}0&{}|a_1|^2+|b_3|^2&{}a_1b_4^*-a_1^*b_3\\ 0&{}0&{}a_1b_3^*-a_1^*b_4&{}|a_1|^2+|b_4|^2\end{array}\right) , \\ \end{aligned}$$
$$\begin{aligned}&D=\left( \begin{array}{cc}BB^\dag +|a_2|^2I&{}a_3^*B+a_2B^\dag \\ a_3B^\dag +a_2^*B&{}|a_3|^2I+BB^\dag \end{array}\right) \nonumber \\&\quad =\left( \begin{array}{cccccccc}|b_1|^2+|a_2|^2&{}0&{}0&{}0&{}0&{}a_3^*b_1+a_2b_2^*&{}0&{}0\\ 0&{}|b_2|^2+|a_2|^2&{}0&{}0&{}a_2b_1^*+a_3^*b_2&{}0&{}0&{}0\\ 0&{}0&{}|b_3|^2+|a_2|^2&{}0&{}0&{}0&{}0&{}a_2b_4^*+a_3^*b_3\\ 0&{}0&{}0&{}|b_4|^2+|a_2|^2&{}0&{}0&{}a_3^*b_4 +a_2b_3^*&{}0\\ 0&{}a_2^*b_1+a_3b_2^*&{}0&{}0&{}|b_1|^2 +|a_3|^2&{}0&{}0&{}0\\ a_3b_1^*+a_2^*b_2&{}0&{}0&{}0&{}0&{}|b_2|^2+|a_3|^2&{}0&{}0\\ 0&{}0&{}0&{}a_3b_4^*+a_2^*b_3&{}0&{}0&{}|b_3|^2 +|a_3|^2&{}\\ 0&{}0&{}a_2^*b_4 +a_3b_3^*&{}0&{}0&{}0&{}0&{}|b_4|^2 + |a_3|^2\end{array}\right) \nonumber \\&\quad \sim \left( \begin{array}{cccccccc}|b_1|^2+|a_2|^2&{}a_3^*b_1 +a_2b_2^*&{}0&{}0&{}0&{}0&{}0&{}0\\ a_3^*b_1+a_2^*b_2&{}|b_2|^2+|a_3|^2&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}|b_2|^2+|a_2|^2&{}a_2b_1^* +a_3^*b_2&{}0&{}0&{}0&{}0\\ 0&{}0&{}a_2^*b_1 +a_3b_2^*&{}|b_1|^2+|a_3|^2&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}|b_3|^2+|a_2|^2&{}a_2b_4^*+a_3^*b_3&{}0&{}0\\ 0&{}0&{}0&{}0&{} a_3b_3^*+a_2^*b_4&{}|b_4|^2+|a_3|^2&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}|b_4|^2+|a_2|^2&{}a_3^*b_4+a_2b_3^*\\ 0&{}0&{}0&{}0&{}0&{}0&{} a_3b_4^*+a_2^*b_3&{}|b_3|^2+|a_3|^2\end{array}\right) \nonumber \\&\quad =D_1\oplus D_2\oplus D_3\oplus D_4. \end{aligned}$$
(45)

One can formulate the characteristic polynomial of C as follows.

$$\begin{aligned} \det (\lambda I-C)=f_1(\lambda )\cdot f_2(\lambda )\cdot f_3(\lambda )\cdot f_4(\lambda ), \end{aligned}$$
(46)

where

$$\begin{aligned} \begin{array}{lll} f_1(\lambda )&{}=&{}(|b_1|^2+|a_1|^2-\lambda )(|a_1|^2+|b_2|^2-\lambda )-|a_1b_2^*+a_1^*b_1|^2,\\ f_2(\lambda )&{}=&{}(|b_3|^2+|a_1|^2-\lambda )(|a_1|^2+|b_4|^2-\lambda )-|a_1b_4^*+a_1^*b_3|^2,\\ f_3(\lambda )&{}=&{}(|b_1|^2+|a_1|^2-\lambda )(|a_1|^2+|b_2|^2-\lambda )-|a_1b_2^*-a_1^*b_1|^2,\\ f_4(\lambda )&{}=&{}(|b_3|^3+|a_1|^2-\lambda )(|a_1|^2+|b_4|^2-\lambda )-|a_1b_4^*+a_1^*b_3|^2. \end{array} \end{aligned}$$
(47)

We first claim the larger root of \(f_i(\lambda )=0, \forall i=1,2,3,4\), is not greater than \(\frac{1}{4}\). Take \(f_1(\lambda )\) as an example. It’s clear that the sum of the two roots of \(f_1(\lambda )=0\) is \(2|a_1|^2+|b_1|^2+|b_2|^2\). Since \(XX^t=C\oplus D\) is a semipositive definite matrix. All the eigenvalues of C and D are nonnegative. This implies that all the roots of \(f_i(\lambda )=0, i=1, 2, 3, 4\) are nonnegative. So we have the larger root of \(f_1(\lambda )=0\) is not greater than the sum of two roots, i.e., \(2|a_1|^2+|b_1|^2+|b_2|^2\). Recall the \(\sum _{i=1}^3(|a_i|^2+|b_i|^2)+|a_1|^2+|b_4|^2=\frac{1}{4}.\) Therefore, we conclude that the larger root of \(f_1(\lambda )=0\) is not larger than \(\frac{1}{4}.\) One can draw the same conclusion of \(f_i(\lambda ), i=2, 3, 4\). Then, our claim holds.

This implies the largest eigenvalue of C is not greater than \(\frac{1}{4}, \)i.e.,

$$\begin{aligned} \lambda \le \frac{1}{4}. \end{aligned}$$
(48)

The characteristic polynomial of D can be expressed as follows:

$$\begin{aligned} \det (\lambda I-D)=g_1 (\mu )\cdot g_2(\mu )\cdot g_3(\mu )\cdot g_3(\mu ), \end{aligned}$$
(49)

where

$$\begin{aligned} \begin{array}{lll} g_1(\mu )&{}=&{}(|b_1|^2+|a_2|^2-\mu )(|a_3|^2+|b_2|^2-\mu )-|a_3^*b_1+a_2b_2^*|^2,\\ g_2(\mu )&{}=&{}(|b_2|^2+|a_2|^2-\mu )(|a_3|^2+|b_1|^2-\mu )-|b_1^*a_2+b_2a_3^*|^2,\\ g_3(\mu )&{}=&{}(|b_3|^2+|a_2|^2-\mu )(|a_3|^2+|b_4|^2-\mu )-|a_3^*b_3+a_2b_4^*|^2,\\ g_4(\mu )&{}=&{}(|b_4|^2+|a_2|^2-\mu )(|a_3|^2+|b_3|^2-\mu )-|a_3^*b_4+a_2b_3^*|^2. \end{array}\end{aligned}$$
(50)

By the same way, we can show that the maximal eigenvalue \(\mu \) of matrix D satisfying

$$\begin{aligned} \mu \le \frac{1}{4}. \end{aligned}$$
(51)

Equations (48) and (51) imply that \(\lambda +\mu \le \frac{1}{2}.\) This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., He, H., Shi, X. et al. Proving the distillability problem of two-copy \(4\times 4\) Werner states for monomial matrices. Quantum Inf Process 20, 157 (2021). https://doi.org/10.1007/s11128-021-03098-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03098-w

Keywords

Navigation