Skip to main content
Log in

Differential conductance and spin current in hybrid quantum dot-topological superconducting nanowire

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Majorana bound states (MBSs) are topologically protected and follow the non-abelian rather than the usual Fermi–Dirac statistical rule, and then are ideal choice for the preparation of quantum bits in topologically fault-tolerant quantum computing. The MBSs also have significant influences on the electron transport processes in mesoscopic systems and have been studied in the field of fabricating efficient and energy-saving quantum devices. In this study, we investigated electron transport through a hybridized system composed of a topological superconducting nanowire and quantum dot (QD). Effects of MBSs prepared at the nanowire on differential conductance are calculated and analyzed. It is proved that the differential conductance peak near the superconducting nanowires at zero bias reflects the existence of Majorana fermions. By using the Green's function equation of motion method, we found that a pure spin current without the accompany of charge current can be generated by changing the coupling strength between the QD and MBSs, as well as the accumulation of spin heat in the leads. In the presence of Coulomb interaction in the QD, the direction of pure spin current can be changed by modulating the dot energy level and the coupling strength between dot and MBSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oreg, Y., Refael, G., Oppen, F.V.: Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett 105(17), 177002 (2010)

    Article  ADS  Google Scholar 

  2. Sau, J.D., Lutchyn, R.M., Tewari, S., et al.: Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104(4), 040502 (2010)

    Article  ADS  Google Scholar 

  3. Tewari, S., Sau, J.D.: Topological invariants for spin-orbit coupled superconductor nanowires. Phys. Rev. Lett. 109(15), 150408 (2012)

    Article  ADS  Google Scholar 

  4. Mourik, V., Zuo, K., Frolov, S.M., et al.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336(6084), 1003–1007 (2012)

    Article  ADS  Google Scholar 

  5. Shang, E.M., Pan, Y.M., Shao, L.B.: Detection of Majorana fermions in an Aharonov-Bohm interferometer. Chin. Phys. B 23, 057201 (2014)

    Article  ADS  Google Scholar 

  6. Gong, W.J., Zhang, S.F., Li, Z.C.: Detection of a Majorana fermion zero mode by a T-shaped quantum-dot structure. Phys. Rev. B 89, 245413 (2014)

    Article  ADS  Google Scholar 

  7. Jiang, C., Lu, G., Gong, W.J.: Tunable transport through a quantum dot chain with side-coupled Majorana bound states. J. Appl. Phys. 116, 103704 (2014)

    Article  ADS  Google Scholar 

  8. Gong, W.J., Zhao, Y., Gao, Z.: Universal transport properties of a quantum dot system with a laterally-coupled Majorana zero mode. Curr. Appl. Phys. 15, 520 (2015)

    Article  ADS  Google Scholar 

  9. Deng, M.T., Vaitiekenas, S., Hansen, E.B., et al.: Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557 (2016)

    Article  ADS  Google Scholar 

  10. Kikkawa, J., Awschalom, D.D.: Lateral drag of spin coherence in gallium arsenide. Nature 397(6517), 139–141 (1999)

    Article  ADS  Google Scholar 

  11. Kikkawa, J., Berezovsky, J., McGuire, J.P., et al.: Spin accumulation in forward- biased MnAs/GaAs Schottky diodes. Phys. Rev. Lett. 93(9), 097602 (2004)

    Article  ADS  Google Scholar 

  12. Crooker, S.A., Furis, M., Lou, X., et al.: Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309(5744), 2191–2195 (2005)

    Article  ADS  Google Scholar 

  13. Kato, K., Myers, R.C., Gossard, A.C., et al.: Observation of the spin hall effect in semiconductors. Science 306(5703), 1910–1913 (2004)

    Article  ADS  Google Scholar 

  14. Valenzuela, S.O., Tinkham, M.: Direct electronic measurement of the spin hall effect. Nature 442(7099), 176–179 (2006)

    Article  ADS  Google Scholar 

  15. Seki, T., Hasegawa, Y., Mitani, S., et al.: Giant spin hall effect in perpendicularly spin-polarized FePt/Au devices. Nat. Mat.. 7(2), 125–129 (2008)

    Article  Google Scholar 

  16. Cui, X.D., Shen, S.Q., Li, J., et al.: Observation of electric current induced by optically injected spin current. Appl. Phys. Lett. 90(24), 242115 (2007)

    Article  ADS  Google Scholar 

  17. Dubi, Y., Ventra, M.D.: Thermospin effects in a quantum dot connected to ferromagnetic leads. Phys. Rev. B 79(8), 081302 (2009)

    Article  ADS  Google Scholar 

  18. Wierzbicki, M., Swirkowicz, R.: Heat transport and thermoelectric efficiency of two-level quantum dot attached to ferromagnetic electrodes. Phys. Lett. A 375(3), 609–613 (2011)

    Article  ADS  Google Scholar 

  19. Yang, X.F., Liu, Y.S.: Pure spin current in a double quantum dot device generated by thermal bias. J. Appl. Phys. 113(16), 164310 (2013)

    Article  ADS  Google Scholar 

  20. Kane, C.L., Mele, E.J.: Quantum spin hall effect in graphene. Phys. Rev. Lett. 95(22), 226801 (2005)

    Article  ADS  Google Scholar 

  21. Bernevig, B.A., Hughes, T.L., Zhang, S.C.: Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314(5906), 1757–1761 (2006)

    Article  ADS  Google Scholar 

  22. Konig, M., Wiedmann, S., Brune, C., et al.: Quantum spin hall insulator state in HgTe quantum wells. Science 318(5851), 766–770 (2007)

    Article  ADS  Google Scholar 

  23. Hsieh, D., Qian, D., Wray, L., et al.: A topological Dirac insulator in a quantum spin hall phase. Nature 452(7190), 970 (2008)

    Article  ADS  Google Scholar 

  24. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045–3067 (2010)

    Article  ADS  Google Scholar 

  25. Liu, J., Li, K.M., et al.: Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy. Chin. Phys. B 29, 007302 (2020)

    Google Scholar 

  26. Sun, H.H., et al.: Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016)

    Article  ADS  Google Scholar 

  27. Jeon, S., Xie, Y., Li, J., et al.: Distinguishing a Majorana zero mode using spin-resolved measurements. Science 358, 772–776 (2017)

    Article  ADS  Google Scholar 

  28. Wang, D., et al.: Evidence for Majorana bound states in an iron-basedsupercon- ductor. Science 362, 333 (2018)

    Article  ADS  Google Scholar 

  29. Machida, T., Sun, Y., Pyon, S., et al.: Zero-energy vortex bound state in the super-conducting topological surface state of Fe (Se, Te). Nat. Mater 18, 811–815 (2019)

    Article  ADS  Google Scholar 

  30. Haug, H., Jauho, A.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer Ser. Solid-State Sci., Springer (2008)

  31. Jauho, A.P., Wingreen, N.S., Meir, Y.: Time-dependent transport in interacting and nointeracting resonant-tunneling systems. Phys. Rev. B 50, 5528 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Project is supported by the National Natural Science Foundation of China (Grant No. 11564029), the Natural Science Foundation of Inner Mongolia, China (Grant No. 2017MS0112), the Science Foundation for excellent Youth Scholars of Inner Mongolia University of Science and Technology, China (Grant No. 2017YQL06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K.M., Wang, T.T. & Liu, J. Differential conductance and spin current in hybrid quantum dot-topological superconducting nanowire. Quantum Inf Process 20, 177 (2021). https://doi.org/10.1007/s11128-021-03107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03107-y

Keywords

Navigation