Skip to main content
Log in

Tripartite orbital angular momentum quantum information and non-Kolmogorov turbulent atmosphere

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The distributions of tripartite quantum information (including entanglement, discord-like correlation and coherence) with orbital angular momentum states in non-Kolmogorov turbulent atmosphere are investigated. We introduce two exactly computable measures for tripartite discord-like correlation and tripartite coherence by consider the geometric mean of bipartite quantities. For illustration, we consider Laguerre–Gaussian beams to explore the propagations of typical tripartite states (the W state and GHZ state) and find that the decay of tripartite quantum information is qualitatively distinct from that of bipartite quantum information. It also shown that tripartite quantum information is almost insensitive to the outer scale parameter while the decay can be slowed down with a larger inner scale parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  2. Molina-Terriza, G., Torres, J.P., Torner, L.: Twisted photons. Nat. Phys. 3, 305 (2007)

    Article  Google Scholar 

  3. Padgett, M.J.: Orbital angular momentum 25 years on. Opt. Express 25, 11265 (2017)

    Article  ADS  Google Scholar 

  4. Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018)

    Article  Google Scholar 

  5. Nagali, E., Sansoni, L., Sciarrino, F., Martini, F.D., Marrucci, L., Piccirillo, B., Karimi, E., Santamato, E.: Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nat. Photon. 3, 720 (2009)

    Article  ADS  Google Scholar 

  6. Bouchard, F., Fickler, R., Boyd, R.W., Karimi, E.: High-dimensional quantum cloning and applications to quantum hacking. Sci. Adv. 3, e1601915 (2017)

    Article  ADS  Google Scholar 

  7. Vallone, G., DAmbrosio, V., Sponselli, A., Slussarenko, S., Marrucci, L., Sciarrino, F., Villoresi, P.: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014)

    Article  ADS  Google Scholar 

  8. Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)

    Article  ADS  Google Scholar 

  9. Wang, X.-L., Cai, X.-D., Su, Z.-E., Chen, M.-C., Wu, D., Li, L., Liu, N.-L., Lu, C.-Y., Pan, J.-W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)

    Article  ADS  Google Scholar 

  10. Luo, Y.-H., Zhong, H.-S., Erhard, M., Wang, X.-L., Peng, L.-C., Krenn, M., Jiang, X., Li, L., Liu, N.-L., Lu, C.-Y., Zeilinger, A., Pan, J.-W.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019)

    Article  ADS  Google Scholar 

  11. Gibson, G., Courtial, J., Padgett, M.J., Vasnetsov, M., Pasko, V., Barnett, S.M., Franke-Arnold, S.: Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448 (2004)

    Article  ADS  Google Scholar 

  12. Wang, J., Yang, J.-Y., Fazal, I.M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar, S., Tur, M., Willner, A.E.: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488 (2012)

    Article  ADS  Google Scholar 

  13. Andrews, L.C., Phillips, R.L.: Laser Beam Propagation through Random Media. SPIE, Bellingham (2005)

    Book  Google Scholar 

  14. Paterson, C.: Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94, 153901 (2005)

    Article  ADS  Google Scholar 

  15. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Zhao, S.M., Leach, J., Gong, L.Y., Ding, J., Zheng, B.Y.: Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states. Opt. Express 20, 452 (2012)

    Article  ADS  Google Scholar 

  17. Gonzalez Alonso, J.R., Brun, T.A.: Protecting orbital-angular-momentum photons from decoherence in a turbulent atmosphere. Phys. Rev. A 88, 022326 (2013)

    Article  ADS  Google Scholar 

  18. Leonhard, N., Sorelli, G., Shatokhin, V.N., Reinlein, C., Buchleitner, A.: Protecting the entanglement of twisted photons by adaptive optics. Phys. Rev. A 97, 012321 (2018)

    Article  ADS  Google Scholar 

  19. Sorelli, G., Leonhard, N., Shatokhin, V.N., Reinlein, C., Buchleitner, A.: Entanglement protection of high-dimensional states by adaptive optics. New J. Phys. 21, 023003 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  20. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  21. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  22. Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  23. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  25. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  26. Braga, H.C., Rulli, C.C., de Oliveira, T.R., Sarandy, M.S.: Monogamy of quantum discord by multipartite correlations. Phys. Rev. A 86, 062106 (2012)

    Article  ADS  Google Scholar 

  27. Bai, Y.-K., Zhang, N., Ye, M.-Y., Wang, Z.D.: Exploring multipartite quantum correlations with the square of quantum discord. Phys. Rev. A 88, 012123 (2013)

    Article  ADS  Google Scholar 

  28. Chi, D.P., Kim, J.S., Lee, K.: Generalized entropy and global quantum discord in multiparty quantum systems. Phys. Rev. A 87, 062339 (2013)

    Article  ADS  Google Scholar 

  29. Ali, M.: Local quantum uncertainty for multipartite quantum systems. Eur. Phys. J. D 74, 186 (2020)

    Article  ADS  Google Scholar 

  30. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  31. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  32. Karpat, G., Çakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  33. Smith, B.J., Raymer, M.G.: Two-photon wave mechanics. Phys. Rev. A 74, 062104 (2006)

    Article  ADS  Google Scholar 

  34. Gopaul, C., Andrews, R.: The effect of atmospheric turbulence on entangled orbital angular momentum states. New J. Phys. 9, 94 (2007)

    Article  ADS  Google Scholar 

  35. Hamadou Ibrahim, A., Roux, F.S., McLaren, M., Konrad, T., Forbes, A.: Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312 (2013)

    Article  ADS  Google Scholar 

  36. Leonhard, N.D., Shatokhin, V.N., Buchleitner, A.: Universal entanglement decay of photonic-orbital-angular-momentum qubit states in atmospheric turbulence. Phys. Rev. A 91, 012345 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  37. Ndagano, B., Perez-Garcia, B., Roux, F.S., McLaren, M., Rosales-Guzman, C., Zhang, Y., Mouane, O., Hernandez-Aranda, R.I., Konrad, T., Forbes, A.: Characterizing quantum channels with non-separable states of classical light. Nat. Phys. 13, 397 (2017)

    Article  Google Scholar 

  38. Toselli, I., Andrews, L.C., Phillips, R.L., Ferrero, V.: Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence. Proc. SPIE 6551, 65510E (2007)

    Article  ADS  Google Scholar 

  39. Malik, M., Erhard, M., Huber, M., Krenn, M., Fickler, R., Zeilinger, A.: Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248 (2016)

    Article  ADS  Google Scholar 

  40. Erhard, M., Malik, M., Krenn, M., Zeilinger, A.: Experimental greenberger–horne–zeilinger entanglement beyond qubits. Nat. Photon. 12, 759 (2018)

    Article  ADS  Google Scholar 

  41. Sabín, C., García-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  42. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  43. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  44. Yu, C.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11811530052, 61701196 and 61871202) and the Fundamental Research Funds for the Central Universities (Grant No. JUSRP21935).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Da Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, ZD., Zhai, S., Wang, J. et al. Tripartite orbital angular momentum quantum information and non-Kolmogorov turbulent atmosphere. Quantum Inf Process 20, 263 (2021). https://doi.org/10.1007/s11128-021-03201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03201-1

Keywords

Navigation