Skip to main content
Log in

Dynamic dissipative synchronized cooling of two mechanical resonators in strong coupling optomechanics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Ground-state cooling of multiple mechanical resonators is an important goal in the study of quantum optomechanics. Here, we propose a dynamic dissipative synchronous cooling method for the simultaneous cooling of the two mechanical resonators in the strong optomechanical coupling regime. The synchronized modulation of the cavity dissipation can significantly accelerate the cooling process, with both of the resonators reaching the ground state. We derive the analytical cooling limits, which agree with the numerical simulations. The present scheme opens a new prospect for the research of multiple-mode ground-state cooling of mechanical resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meystre, P., et al.: A short walk through quantum optomechanics. Physics (Berlin) 525, 215 (2013)

    Article  MATH  Google Scholar 

  2. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Phys. Rev. Mod. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  3. Abbott, B., et al.: LIGO: the laser interferometer gravitational-wave observatory. New J. Phys. 11, 073032 (2009)

    Article  ADS  Google Scholar 

  4. Eerkens, H.J., Buters, F.M., Weaver, M.J., Pepper, B., Welker, G., Heeck, K., Sonin, P., Man, S.D., Bouwmeester, D.: Optical side-band cooling of a low frequency optomechanical system. Opt. Exp. 23, 8014 (2015)

    Article  ADS  Google Scholar 

  5. Khan, R., Massel, F., Heikkila, T.T.: Cross-Kerr nonlinearity in optomechanical systems Phys. Rev. A 91, 043822 (2015)

    Article  Google Scholar 

  6. Bagci, T., et al.: Optical detection of radio waves through a nanomechanical transducer. Nature (London) 507, 81 (2014)

    Article  ADS  Google Scholar 

  7. Wieczorek, W., Hofer, S.G., Obermaier, J.H., Riedinger, R., Hammerer, K., Aspelmeye, M.: Optimal state estimation for cavity optomechanical systems. Phys. Rev. Lett. 114, 223601 (2015)

    Article  ADS  Google Scholar 

  8. Ullah, M., Abbas, A., Jing, J., Wang, L.G.: Flexible manipulation of the Goos-Hänchen shift in a cavity optomechanical system. Phys. Rev. A 100, 063833 (2019)

    Article  ADS  Google Scholar 

  9. Wei, X., Sheng, J.T., Yang, C., Wu, Y.L., Wu, H.B.: Controllable two-membrane-in-the-middle cavity optomechanical system.. Phys. Rev. A 99, 023851 (2019)

    Article  ADS  Google Scholar 

  10. Machado, J.D.P., Blanter, Y.M.: Quantum nonlinear dynamics of optomechanical systems in the strong-coupling regime. Phys. Rev. A 94, 063835 (2016)

    Article  ADS  Google Scholar 

  11. Bagheri, M., Poot, M., Fan, L., Marquardt, F., Tang, H.X.: Photonic cavity synchronization of nanomechanical oscillator. Phys. Rev. Lett. 111, 213902 (2013)

    Article  ADS  Google Scholar 

  12. Xu, X.W., Li, Y., Li, B., Jing, H., Chen, A.X.: Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. Phys. Rev. Applied. 13, 044070 (2020)

    Article  ADS  Google Scholar 

  13. Karabalin, R.B., Cross, M.C., Roukes, M.L.: Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79, 165309 (2009)

    Article  ADS  Google Scholar 

  14. Joseph, R.P., Atabek, O., Sukharev, M., Charron, E.: Theoretical analysis of dipole-induced electromagnetic transparency. Phys. Rev. A 91, 043835 (2015)

    Article  ADS  Google Scholar 

  15. Joseph, R.P., Sukharev, M., Atabek, O., Charron, E.: Dipole-induced electromagnetic transparency. Phys. Rev. Lett. 113, 163603 (2014)

    Article  ADS  Google Scholar 

  16. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 6010 (2010)

    Article  Google Scholar 

  17. Safavi-Naeini, A.H., Alegre, T., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature (London) 472, 7341 (2011)

    Article  Google Scholar 

  18. Zyczkowski, K., Horodecki, P., Horodecki, M., Horodecki, R.: Dynamics of quantum entanglement. Phys. Rev. A 65, 012101 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Cohen, J.D., Meenehan, S.M., Maccabe, G.S., Gröblacher, S., Safavi-Naeini, A.H., Marsili, F., Shaw, M.D., Painter, O.: Phonon counting and intensity interferometry of a nanomechanical resonator. Nature (London) 520, 7548 (2014)

    Google Scholar 

  20. Riedinger, R., Hong, S., Norte, R.A., Slater, J.A., Shang, J., Krause, A.G., Anant, V., Aspelmeyer, M., Gröblacher, S.: Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature (London) 530, 7590 (2016)

    Article  Google Scholar 

  21. Ockeloen-Korppi, C.F., Damskägg, E., Pirkkalainen, J.-M., Asjad, M., Clerk, A.A., Massel, F., Woolley, M.J., Sillanpää, M.A.: Stabilized entanglement of massive mechanical oscillators. Nature (London) 556, 7702 (2018)

    Article  Google Scholar 

  22. Lü, X.Y., Liao, J.Q., Tian, L., Nori, F.: Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Phys. Rev. A 91, 013834 (2015)

    Article  ADS  Google Scholar 

  23. Zhou, L., Cheng, J., Han, Y., Zhang, W.P.: Nonlinearity enhancement in optomechanical systems. Phys. Rev. A 88, 063854 (2013)

    Article  ADS  Google Scholar 

  24. Khan, R., Massel, F., Heikkilä, T.T.: Cross-Kerr nonlinearity in optomechanical systems. Phys. Rev. A 91, 043822 (2015)

    Article  ADS  Google Scholar 

  25. Dey, S., Bhat, A., Momeni, D., Faizal, M., Ali, A.F., Dey, T.K., Rehman, A.: Probing noncommutative theories with quantum optical experiments. Nucl. Phys. B 924, 578 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  26. Khodadi, M., Nozari, K., Dey, S., Bhat, A., Faizal, M.: A new bound on polymer quantization via an opto-mechanical setup. Sci. Rep. 8, 1659 (2018)

    Article  ADS  Google Scholar 

  27. Singh, R., Purdy, T.P.: High-Q nanomechanical resonators for optomechanical sensing beyond the standard quantum limit. CLEO_SI. 10, 1364 (2020)

    Google Scholar 

  28. Sainadh, U.S., Kumar, M.A.: Displacement sensing beyond the standard quantum limit with intensity-dependent optomechanical coupling. Phys. Rev. A 102, 063523 (2020)

    Article  ADS  Google Scholar 

  29. Park, C.Y., Kang, M., Lee, C.W., Bang, J., Lee, S.W., Jeong, H.: Quantum macroscopicity measure for arbitrary spin systems and its application to quantum phase transitions. Phys. Rev. A 94, 052105 (2016)

    Article  ADS  Google Scholar 

  30. Martin, I., Shnirman, A., Tian, L., Zoller, P.: Ground-state cooling of mechanical resonators. Phys. Rev. B 69, 125339 (2004)

    Article  ADS  Google Scholar 

  31. Liu, Y.L., Liu, Y.X.: Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity Phys. Rev. A 96, 023812 (2017)

    Article  Google Scholar 

  32. Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G., Kippenberg, T.J.: Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature (London) 10, 1038 (2009)

    Google Scholar 

  33. Peterson, R.W., Purdy, T.P., Kampel, N.S., Andrews, R.W., Yu, P.L., Lehnert, K.W., Regal, C.A.: Laser cooling of a micromechanical membrane to the quantum backaction limit Phys. Rev. Lett. 116, 063601 (2016)

    Article  ADS  Google Scholar 

  34. Purdy, T.P., Peterson, R.W., Regal, C.A.: Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801 (2013)

    Article  ADS  Google Scholar 

  35. LaHaye, M.D., Buu, O., Camarota, B., Schwab, K.C.: Approaching the quantum limit of a nanomechanical resonator. Science 304, 74 (2004)

    Article  ADS  Google Scholar 

  36. Teufel, J.D., Donner, T., Beltran, M.A.C., Harlow, J.W., Lehnert, K.W.: Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnology 4, 820 (2009)

    Article  ADS  Google Scholar 

  37. Krause, A.G., Winger, M., Blasius, T.D., Lin, Q., Painter, O.: A high-resolution microchip optomechanical accelerometer. Nat. Photonics 6, 768 (2012)

    Article  ADS  Google Scholar 

  38. Huang, P., Wang, P. F., Zhou, J.W., Wang, Z.X., Ju, C.Y., Wang, Z.M., Shen, Y., Duan, C.K., Du, J.F.: Phys. Rev. Lett. 110, 227202 (2013)

  39. Stannigel, K., Komar, P., Habraken, S.J.M., Bennett, S.D., Lukin, M.D., Zoller, P., Rabl, P.: Optomechanical quantum information processing with photons and phonons Phys. Rev. Lett. 109, 013603 (2012)

    Article  ADS  Google Scholar 

  40. Fiore, V., Yang, Y., Kuzyk, M.C., Barbour, R., Tian, L., Wang, H.L.: Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107, 133601 (2011)

    Article  ADS  Google Scholar 

  41. Agarwal, G.S., Huang, S.M.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  42. Dong, C.H., Fiore, V., Kuzyk, M.C., Wang, H.L.: Optomechanical dark mode. Science 338, 1609 (2012)

    Article  ADS  Google Scholar 

  43. Isart, O.R., Pflanzer, A.C., Blaser, F., Kaltenbaek, R., Kiesel, N., Aspelmeyer, M., Cirac, J.I.: Large quantum superpositions and interference of massive nanometer-sized objects. Phys. Rev. Lett. 107, 020405 (2011)

    Article  Google Scholar 

  44. Yin, Z.Q., Li, T.C., Zhang, X., Duan, L.M.: Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys. Rev. A 88, 033614 (2013)

    Article  ADS  Google Scholar 

  45. Rossi, M., Mason, D., Chen, J.X., Tsaturyan, Y., Schliesser, A.: Measurement-based quantum control of mechanical motion. Nature (London) 563, 39 (2018)

    Article  Google Scholar 

  46. Lai, D.G., Huang, J.F., Yin, X.L., Hou, B.P., Li, W., Vitali, D., Nori, F., Liao, J.Q.: Nonreciprocal ground-state cooling of multiple mechanical resonators. Phys. Rev. A 102, 011502 (2020)

    Article  ADS  Google Scholar 

  47. Lai, D.G., Zou, F., Hou, B.P., Xiao, Y.F., Liao, J.Q.: Simultaneous cooling of coupled mechanical resonators in cavity optomechanics. Phys. Rev. A 98, 023860 (2018)

    Article  ADS  Google Scholar 

  48. Qi, L., Xing, Y., Liu, S.T., Zhang, S., Wang, H.F.: Topological phase induced by distinguishing parameter regimes in a cavity optomechanical system with multiple mechanical resonators. Phys. Rev. A 101, 052325 (2020)

    Article  ADS  Google Scholar 

  49. Faust, T., Rieger, J., Seitner, M.J., Krenn, P., Kotthaus, J.P., Weig, E.M.: Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes. Phys. Rev. Lett. 109, 037205 (2012)

    Article  ADS  Google Scholar 

  50. Seitner, M.J., Abdi, M., Ridolfo, A., Hartmann, M.J., Weig, E.M.: Parametric oscillation, frequency mixing, and injection locking of strongly coupled nanomechanical resonator modes. Phys Rev. Lett. 118, 254301 (2017)

    Article  ADS  Google Scholar 

  51. Wang, Q., Xu, L., Wang, Y.M.: Simultaneous cooling the coupled nano-mechanical resonators in the strong optomechanical coupling regime. Laser Phys. 29, 065201 (2019)

    Article  ADS  Google Scholar 

  52. Wang, Q., He, Z.: Cooling of coupled nano-mechanical resonators in the weak optomechanical coupling regime. Laser Phys. 29, 025201 (2019)

    Article  ADS  Google Scholar 

  53. Genes, C., Vitali, D., Tombesi, P.: Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. 10, 095009 (2008)

    Article  ADS  Google Scholar 

  54. Wang, M., Lü, X.Y., Miranowicz, A., Yin, T.S., Wu, Y., Nori, F.: Unconventional phonon blockade via atom-photon-phonon interaction in hybrid optomechanical systems. Phys. Rev. A 1806, 03754 (2018)

    Google Scholar 

  55. Wang, C., Lin, Q., He, B.: Breaking the optomechanical cooling limit by two drive fields on a membrane-in-the-middle system. Phys. Rev. A 99, 023829 (2019)

    Article  ADS  Google Scholar 

  56. Liu, Y.C., Xiao, Y.F., Luan, X.S., Wong, C.W.: Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett. 110, 153606 (2013)

    Article  ADS  Google Scholar 

  57. Okamoto, H., Gourgout, A., Chang, C.Y., Onomitsu, K., Mahboob, I., Chang, E.Y., Yamaguchi, H.: Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys. 9, 480 (2013)

    Article  Google Scholar 

  58. Grudinin, I.S., Lee, H., Painter, O., Vahala, K.J.: Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010)

    Article  ADS  Google Scholar 

  59. Liu, Y.C., Xiao, Y.F., Luan, X., Gong, Q., Wong, C.W.: Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Phys. Rev. A 91, 033818 (2015)

    Article  ADS  Google Scholar 

  60. Guo, Y.J., Li, K., Nie, W.J., Li, Y.: Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A 90, 053841 (2014)

    Article  ADS  Google Scholar 

  61. Xu, Q.F., Dong, P., Lipson, M.: Breaking the delay-bandwidth limit in a photonic structure. Nat. Phys. 3, 406 (2007)

    Article  Google Scholar 

  62. Kondo, K., Shinkawa, M., Hamachi, Y., Saito, Y., Arita, Y., Baba, T.: Ultrafast slow-light tuning beyond the carrier lifetime using photonic crystal waveguides. Phys. Rev. Lett. 110, 053902 (2013)

    Article  ADS  Google Scholar 

  63. O’Connell, A.D., et al.: Quantum ground state and single-phonon control of a mechanical resonator. Nature (London) 464, 697 (2010)

    Article  ADS  Google Scholar 

  64. Cohen, J.D., Meenehan, S.M., MacCabe, G.S., Groblacher, S., Naeini, A.H.S., Marsili, F., Shaw, M.D., Painter, O.: Phonon counting and intensity interferometry of a nanomechanical resonator. Nature (London) 520, 522 (2015)

    Article  ADS  Google Scholar 

  65. Palomaki, T.A., Harlow, J.W., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature (London) 495, 210 (2013)

    Article  ADS  Google Scholar 

  66. Verhagen, E., Deleglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature (London) 482, 63 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Prof. ZhengJun Liu and Prof. JieQiao Liao for valuable discussion. This project was supported by the National Natural Science Foundation of China (Grant Nos. 61368002, 11674390, 91736106, 91836302), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Natural Science Foundation of Jiangxi Province (Grant No. 20161BAB202046), the Open Project Program of CAS Key Laboratory of Quantum Information (Grant No. KQI201704), and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghong Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1.1 The quantum Langevin equations

In the frame rotating at the input laser frequency \(\omega_{in}^{{}}\), the Hamiltonian is written as Eq. (2), where \(\Delta_{1}^{{}} = \omega_{in} - \omega_{1}\) and \(\Delta_{2}^{{}} = \omega_{in} - \omega_{2}\) are the detuning. The quantum Langevin equations are given by

$$ \begin{gathered} \dot{a}_{1}^{{}} = \left( {i\Delta_{1}^{{}} - \frac{{\kappa_{1}^{{}} }}{2}} \right)a_{1}^{{}} - ig_{1}^{{}} a_{1}^{{}} \left( {b_{1}^{\dag } + b_{1}^{{}} } \right) - iJ_{1}^{{}} a_{2}^{{}} - i\Omega_{1}^{{}} - \sqrt {\kappa_{1}^{{}} } a_{in,1}^{{}} , \hfill \\ \dot{a}_{2}^{{}} = \left( {i\Delta_{2}^{{}} - \frac{{\kappa_{2}^{{}} }}{2}} \right)a_{2}^{{}} - ig_{2}^{{}} a_{2}^{{}} \left( {b_{2}^{\dag } + b_{2}^{{}} } \right) - iJ_{1}^{ * } a_{1}^{{}} - i\Omega_{2}^{{}} - \sqrt {\kappa_{2}^{{}} } a_{in,2}^{{}} , \hfill \\ \dot{b}_{1}^{{}} = \left( { - i\omega_{m1}^{{}} - \frac{{\gamma_{1}^{{}} }}{2}} \right)b_{1}^{{}} - ig_{1}^{{}} a_{1}^{\dag } a_{1}^{{}} - iJ_{2}^{{}} b_{2}^{{}} - \sqrt {\gamma_{1}^{{}} } b_{in,1}^{{}} , \hfill \\ \dot{b}_{2}^{{}} = \left( { - i\omega_{m2}^{{}} - \frac{{\gamma_{2}^{{}} }}{2}} \right)b_{2}^{{}} - ig_{2}^{{}} a_{2}^{\dag } a_{2}^{{}} - iJ_{2}^{\dag } b_{1}^{{}} - \sqrt {\gamma_{2}^{{}} } b_{in,2}^{{}} , \hfill \\ \end{gathered} $$
(12)

\(\kappa_{l = 1,2}^{{}}\) and \(\gamma_{l = 1,2}^{{}}\) are the decay rates of the \(l\) cavity mode and the \(l\) mechanical mode, respectively. The \(a_{in,1}^{{}} ,a_{in,2}^{{}}\) and \(b_{in,1}^{{}} ,b_{in,2}^{{}}\) are the corresponding noise operators, in which these operators have zero mean values and the following correlation functions:

$$ \begin{gathered} \left\langle {a_{in,1}^{{}} \left( t \right)a_{in,1}^{\dag } \left( {t{\prime }} \right)} \right\rangle = \left\langle {a_{in,2}^{{}} \left( t \right)a_{in,2}^{\dag } \left( {t{\prime }} \right)} \right\rangle = \delta \left( {t - t{\prime }} \right), \hfill \\ \left\langle {a_{in,1}^{\dag } \left( t \right)a_{in,1}^{{}} \left( {t{\prime }} \right)} \right\rangle = \left\langle {a_{in,2}^{\dag } \left( t \right)a_{in,2}^{{}} \left( {t{\prime }} \right)} \right\rangle = 0, \hfill \\ \left\langle {b_{in,1}^{{}} \left( t \right)b_{in,1}^{\dag } \left( {t{\prime }} \right)} \right\rangle = \left( {n_{th1} + 1} \right)\delta \left( {t - t{\prime }} \right), \hfill \\ \left\langle {b_{in,1}^{\dag } \left( t \right)b_{in,1}^{{}} \left( {t{\prime }} \right)} \right\rangle = n_{th1} \delta \left( {t - t{\prime }} \right), \hfill \\ \left\langle {b_{in,2}^{{}} \left( t \right)b_{in,2}^{\dag } \left( {t{\prime }} \right)} \right\rangle = \left( {n_{th2} + 1} \right)\delta \left( {t - t{\prime }} \right), \hfill \\ \left\langle {b_{in,2}^{\dag } \left( t \right)b_{in,2}^{{}} \left( {t{\prime }} \right)} \right\rangle = n_{th2} \delta \left( {t - t{\prime }} \right). \hfill \\ \end{gathered} $$
(13)

Here, \(n_{thl = th1,th2}\) are the thermal phonon number which is given by \(n_{thl = th1,th2} = \left[ {\exp \left( {\frac{{\hbar \omega_{ml = m1,m2} }}{{k_{B} T}}} \right) - 1} \right]^{ - 1}\) where \(T\) is the environmental temperature and \(k_{B}\) is Boltzmann constant.

For strong driving, the Hamiltonian can be linearized, with \(a_{1} \to \alpha_{1} + a_{{_{1} }}^{{\prime }}\),\(a_{2} \to \alpha_{2} + a_{{_{2} }}^{{\prime }}\),\(b_{1} \to \beta_{1} + b_{{_{1} }}^{{\prime }}\),\(b_{2} \to \beta_{2} + b_{{_{2} }}^{{\prime }}\). Here, \(a_{1}^{{\prime }}\),\(a_{2}^{{\prime }}\) and \(b_{1}^{{\prime }}\),\(b_{2}^{{\prime }}\) describe the quantum fluctuations around the mean values \(\alpha_{1} \equiv \left\langle {a_{1}^{{}} } \right\rangle ,\alpha_{2} \equiv \left\langle {a_{2}^{{}} } \right\rangle\) and \(\beta_{1} \equiv \left\langle {b_{1}^{{}} } \right\rangle ,\beta_{2} \equiv \left\langle {b_{2}^{{}} } \right\rangle\), respectively. For the sake of simplicity, \(a_{1}^{{\prime }}\),\(a_{2}^{{\prime }}\) and \(b_{1}^{{\prime }}\),\(b_{2}^{{\prime }}\) are still written as \(a_{1}^{{}}\),\(a_{2}^{{}}\) and \(b_{1}^{{}}\),\(b_{2}^{{}}\) behind. The quantum Langevin equations are rewritten as

$$ \begin{gathered} \dot{a}_{1}^{{}} = \left( {i\Delta_{1}^{{\prime }} - \frac{{\kappa_{1}^{{}} }}{2}} \right)a_{1}^{{}} - ig_{1}^{{}} \alpha_{1}^{{}} \left( {b_{1}^{\dag } + b_{1}^{{}} } \right) - ig_{1}^{{}} a_{1}^{{}} \left( {b_{1}^{\dag } + b_{1}^{{}} } \right) - iJ_{1}^{{}} a_{2}^{{}} - \sqrt {\kappa_{1}^{{}} } a_{in,1}^{{}} , \hfill \\ \dot{a}_{2}^{{}} = \left( {i\Delta_{2}^{{\prime }} - \frac{{\kappa_{2}^{{}} }}{2}} \right)a_{2}^{{}} - ig_{2}^{{}} \alpha_{2}^{{}} \left( {b_{2}^{\dag } + b_{2}^{{}} } \right) - ig_{2}^{{}} a_{2}^{{}} \left( {b_{2}^{\dag } + b_{2}^{{}} } \right) - iJ_{1}^{ * } a_{1}^{{}} - \sqrt {\kappa_{2}^{{}} } a_{in,2}^{{}} , \hfill \\ \dot{b}_{1}^{{}} = \left( { - i\omega_{m1}^{{}} - \frac{{\gamma_{1}^{{}} }}{2}} \right)b_{1}^{{}} - ig_{1}^{{}} \left( {\alpha_{1}^{ * } a_{1}^{{}} + \alpha_{1}^{{}} a_{1}^{\dag } } \right) - ig_{1}^{{}} a_{1}^{\dag } a_{1}^{{}} - iJ_{2}^{{}} b_{2}^{{}} - \sqrt {\gamma_{1}^{{}} } b_{in,1}^{{}} , \hfill \\ \dot{b}_{2}^{{}} = \left( { - i\omega_{m2}^{{}} - \frac{{\gamma_{2}^{{}} }}{2}} \right)b_{2}^{{}} - ig_{2}^{{}} \left( {\alpha_{2}^{ * } a_{2}^{{}} + \alpha_{2}^{{}} a_{2}^{\dag } } \right) - ig_{2}^{{}} a_{2}^{\dag } a_{2}^{{}} - iJ_{2}^{\dag } b_{1}^{{}} - \sqrt {\gamma_{2}^{{}} } b_{in,2}^{{}} , \hfill \\ \end{gathered} $$
(14)

where \(\Delta_{1}^{{\prime }} = \Delta_{1}^{{}} - g_{1} \left( {\beta_{1}^{ * } + \beta_{1}^{{}} } \right)\) and \(\Delta_{2}^{{\prime }} = \Delta_{2}^{{}} - g_{2} \left( {\beta_{2}^{ * } + \beta_{2}^{{}} } \right)\) are the optomechanical coupling modified detuning, respectively. Under strong driving conditions, the nonlinear terms \(ig_{l}^{{}} a_{l}^{{}} \left( {b_{l}^{\dag } + b_{l}^{{}} } \right)\left| \begin{gathered} \hfill \\ l = 1,2 \hfill \\ \end{gathered} \right.\) and \(ig_{l}^{{}} a_{l}^{\dag } a_{l}^{{}} \left| \begin{gathered} \hfill \\ l = 1,2 \hfill \\ \end{gathered} \right.\) in the above equations are neglected. Then, the quantum Langevin equations become linearized, and the linearized system Hamiltonian can be extracted as

$$ \begin{aligned} H_{L} &= - \Delta_{1}^{{\prime }} a_{1}^{\dag } a_{1}^{{}} - \Delta_{2}^{{\prime }} a_{2}^{\dag } a_{2}^{{}} + \omega_{m1} b_{1}^{\dag } b_{1}^{{}} + \omega_{m2} b_{2}^{\dag } b_{2}^{{}} \\ &\quad+ \left( {G_{1}^{{}} a_{1}^{\dag } + G_{1}^{ * } a_{1}^{{}} } \right)\left( {b_{1}^{\dag } + b_{1}^{{}} } \right) + \left( {G_{2}^{{}} a_{2}^{\dag } + G_{2}^{ * } a_{2}^{{}} } \right)\left( {b_{2}^{\dag } + b_{2}^{{}} } \right) \\ &\quad+ \left( {J_{1}^{{}} a_{1}^{\dag } a_{2}^{{}} + J_{1}^{ * } a_{1}^{{}} a_{2}^{\dag } } \right) + \left( {J_{2}^{{}} b_{1}^{\dag } b_{2}^{{}} + J_{2}^{ * } b_{1}^{{}} b_{2}^{\dag } } \right), \\ \end{aligned} $$
(15)

where \(G_{1} = g_{1} \alpha_{1}\) and \(G_{2} = g_{2} \alpha_{2}\) describe the linear optomechanical coupling strength, respectively.

Appendix B

2.1 The differential equations

$$ \begin{aligned} \frac{d}{dt}\left\langle {a_{1}^{{_{\dag } }} a_{1} } \right\rangle &= - \kappa_{1} \left\langle {a_{1}^{{_{\dag } }} a_{1} } \right\rangle - i\left( G_{1} \left\langle {a_{1}^{{_{\dag } }} b_{1}^{{_{\dag } }} } \right\rangle + G_{1} \left\langle {a_{1}^{{_{\dag } }} b_{1} } \right\rangle - G_{1}^{ * } \left\langle {a_{1} b_{1}^{{_{\dag } }} } \right\rangle - G_{1}^{ * } \left\langle {a_{1} b_{1} } \right\rangle\right.\\&\quad\left. + J_{1} \left\langle {a_{1}^{{_{\dag } }} a_{2} }\right\rangle - J_{1}^{ * } \left\langle {a_{1} a_{2}^{{_{\dag } }}} \right\rangle \right) \end{aligned} $$
$$ \begin{aligned} \frac{d}{dt}\left\langle {a_{1}^{{_{\dag } }} a_{2} } \right\rangle &= \frac{{ - \kappa_{1} - \kappa_{2} }}{2}\left\langle {a_{1}^{{_{\dag } }} a_{2} } \right\rangle - i\left[ \left({\Delta_{1}^{^{\prime}} - \Delta_{2}^{^{\prime}} }\right)\left\langle {a_{1}^{{_{\dag } }} a_{2} } \right\rangle -G_{1}^{ * } \left\langle {a_{2} b_{1}^{{_{\dag } }} } \right\rangle - G_{1}^{ * } \left\langle {a_{2} b_{1} } \right\rangle\right.\nonumber\\&\quad\left. + G_{2} \left\langle {a_{1}^{{_{\dag } }} b_{2}^{{_{\dag }}} } \right\rangle + G_{2} \left\langle {a_{1}^{{_{\dag } }} b_{2} }\right\rangle - J_{1}^{ * } \left\langle {a_{2} a_{2}^{{_{\dag } }}} \right\rangle + J_{1}^{ * } \left\langle {a_{1} a_{1}^{{_{\dag }}} } \right\rangle \right] \end{aligned} $$
$$ \begin{aligned} \frac{d}{dt}\left\langle {a_{1}^{{_{\dag } }} b_{1} }\right\rangle &= \frac{{ - \kappa_{1} - \gamma_{1} }}{2}\left\langle {a_{1}^{{_{\dag } }} b_{1} } \right\rangle - i\left[ \left({\Delta_{1}^{^{\prime}} + \omega_{m1} } \right)\left\langle {a_{1}^{{_{\dag } }} b_{1} } \right\rangle -G_{1}^{ * } \left\langle {b_{1} b_{1} } \right\rangle \right.\\&\quad \left. + G_{1} \left\langle {a_{1}^{{_{\dag } }}a_{1}^{{_{\dag } }} } \right\rangle - G_{1}^{ * } \left\langle {b_{1}^{{_{\dag } }} b_{1} } \right\rangle + G_{1}^{* } \left\langle {a_{1}^{{_{\dag } }} a_{1} } \right\rangle -J_{1}^{ * } \left\langle {a_{2}^{{_{\dag } }} b_{1} } \right\rangle + J_{2} \left\langle {a_{1}^{{_{\dag } }} b_{2} } \right\rangle \right]\end{aligned} $$
$$ \begin{aligned}\frac{d}{dt}\left\langle {a_{1}^{{_{\dag } }} b_{2} } \right\rangle &= \frac{{ - \kappa_{1} - \gamma_{2} }}{2}\left\langle {a_{1}^{{_{\dag } }} b_{2} } \right\rangle - i\left[ \left({\Delta_{1}^{^{\prime}} + \omega_{m2} } \right)\left\langle {a_{1}^{{_{\dag } }} b_{2} } \right\rangle - G_{1}^{ * }\left\langle {b_{1}^{{_{\dag } }} b_{2} } \right\rangle - G_{1}^{ *} \left\langle {b_{1} b_{2} } \right\rangle\right.\\&\quad \left. + G_{2} \left\langle {a_{1}^{{_{\dag } }}a_{2}^{{_{\dag } }} } \right\rangle + G_{2}^{ * } \left\langle {a_{1}^{{_{\dag } }} a_{2} } \right\rangle - J_{1}^{* } \left\langle {a_{2}^{{_{\dag } }} b_{2} } \right\rangle +J_{2}^{ * } \left\langle {a_{1}^{{_{\dag } }} b_{1} } \right\rangle \right]\end{aligned} $$
$$ \frac{d}{dt}\left\langle {a_{1} a_{1} } \right\rangle = - \kappa_{1} \left\langle {a_{1} a_{1} } \right\rangle - i\left( { - 2\Delta_{1}^{^{\prime}} \left\langle {a_{1} a_{1} } \right\rangle + 2G_{1} \left\langle {a_{1} b_{1}^{{_{\dag } }} } \right\rangle + 2G_{1} \left\langle {a_{1} b_{1} } \right\rangle + 2J_{1} \left\langle {a_{1} a_{2} } \right\rangle } \right) $$
$$ \begin{aligned}\frac{d}{dt}\left\langle {a_{1} a_{2} } \right\rangle &= \frac{{ -\kappa_{1} - \kappa_{2} }}{2}\left\langle {a_{1} a_{2} }\right\rangle - i\left[ \left( { - \Delta_{1}^{^{\prime}} -\Delta_{2}^{^{\prime}} } \right)\left\langle {a_{1} a_{2} }\right\rangle + G_{1} \left\langle {a_{2} b_{1}^{{_{\dag } }} }\right\rangle + G_{1} \left\langle {a_{2} b_{1} }\right\rangle\right.\nonumber\\&\quad \left. + G_{2} \left\langle {a_{1} b_{2}^{{_{\dag } }} }\right\rangle + G_{2} \left\langle {a_{1} b_{2} } \right\rangle +J_{1} \left\langle {a_{2} a_{2} } \right\rangle + J_{1}^{ * }\left\langle {a_{1} a_{1} } \right\rangle \right]\end{aligned} $$
$$ \begin{aligned} \frac{d}{dt}\left\langle {a_{1} b_{1} } \right\rangle &= \frac{{ - \kappa_{1} - \gamma_{1} }}{2}\left\langle {a_{1} b_{1}} \right\rangle - i\left[ \left( {\omega_{m1} -\Delta_{1}^{^{\prime}} } \right)\left\langle {a_{1} b_{1} }\right\rangle + G_{1} \left\langle {b_{1} b_{1} } \right\rangle +G_{1} \left\langle {b_{1}^{{_{\dag } }} b_{1} } \right\rangle \right.\\&\quad \left. + G_{1} \left\langle {a_{1}^{{_{\dag } }} a_{1} }\right\rangle + G_{1}^{ * } \left\langle {a_{1} a_{1} }\right\rangle + G_{1} + J_{1} \left\langle {a_{2} b_{1} }\right\rangle + J_{2} \left\langle {a_{1} b_{2} } \right\rangle \right]\end{aligned} $$
$$ \begin{aligned}\frac{d}{dt}\left\langle {a_{1} b_{2} } \right\rangle &= \frac{{ -\kappa_{1} - \gamma_{2} }}{2}\left\langle {a_{1} b_{2} }\right\rangle - i\left[ \left( {\omega_{m2} - \Delta_{1}^{^{\prime}}} \right)\left\langle {a_{1} b_{2} } \right\rangle + G_{1}\left\langle {b_{1}^{{_{\dag } }} b_{2} }\right\rangle + G_{1} \left\langle {b_{1} b_{2} } \right\rangle \right.\\&\quad \left. + G_{2} \left\langle {a_{1} a_{2}^{{_{\dag } }} }\right\rangle + G_{2}^{ * } \left\langle {a_{1} a_{2} }\right\rangle + J_{1} \left\langle {a_{2} b_{2} } \right\rangle +J_{2}^{ * } \left\langle {a_{1} b_{1} } \right\rangle \right]\end{aligned} $$
$$\frac{d}{dt}\left\langle {a_{2}^{{_{\dag } }} a_{2} } \right\rangle = - \kappa_{2} \left\langle {a_{2}^{{_{\dag } }} a_{2} } \right\rangle - i\left( {G_{2} \left\langle {a_{2}^{{_{\dag } }} b_{2}^{{_{\dag } }} } \right\rangle + G_{2} \left\langle {a_{2}^{{_{\dag } }} b_{2} } \right\rangle - G_{2}^{ * } \left\langle {a_{2} b_{2}^{{_{\dag } }} } \right\rangle - G_{2}^{ * } \left\langle {a_{2} b_{2} } \right\rangle - J_{1} \left\langle {a_{1}^{{_{\dag } }} a_{2} } \right\rangle + J_{1}^{ * } \left\langle {a_{1} a_{2}^{{_{\dag } }} } \right\rangle } \right) $$
$$ \begin{aligned} \frac{d}{dt}\left\langle {a_{2}^{{_{\dag } }} b_{1} }\right\rangle & = \frac{{ - \kappa_{2} - \gamma_{1}}}{2}\left\langle {a_{2}^{{_{\dag } }} b_{1} } \right\rangle -i\left[ \left( {\Delta_{2}^{^{\prime}} + \omega_{m1} }\right)\left\langle {a_{2}^{{_{\dag } }} b_{1} } \right\rangle +G_{1} \left\langle {a_{1}^{{_{\dag } }} a_{2}^{{_{\dag } }} }\right\rangle + G_{1}^{ * } \left\langle {a_{1} a_{2}^{{_{\dag } }}} \right\rangle\right.\\&\quad \left. - G_{2}^{* } \left\langle {b_{1} b_{2}^{{_{\dag } }} } \right\rangle -G_{2}^{ * } \left\langle {b_{1} b_{2} } \right\rangle - J_{1}\left\langle {a_{1}^{{_{\dag } }} b_{1} } \right\rangle + J_{2}\left\langle {a_{2}^{{_{\dag } }} b_{2} } \right\rangle \right]\end{aligned} $$
$$ \begin{aligned}\frac{d}{dt}\left\langle {a_{2}^{{_{\dag } }} b_{2} } \right\rangle &= \frac{{ - \kappa_{2} - \gamma_{2} }}{2}\left\langle {a_{2}^{{_{\dag } }} b_{2} } \right\rangle - i\left[ \left({\Delta_{2}^{^{\prime}} + \omega_{m2} } \right)\left\langle {a_{2}^{{_{\dag } }} b_{2} } \right\rangle + G_{2} \left\langle {a_{2}^{{_{\dag } }} a_{2}^{{_{\dag } }} } \right\rangle - G_{2}^{ *} \left\langle {b_{2} b_{2} } \right\rangle\right.\\&\quad \left. - G_{2}^{ * } \left\langle {b_{2}^{{_{\dag } }} b_{2}} \right\rangle + G_{2}^{ * } \left\langle {a_{2}^{{_{\dag } }}a_{2} } \right\rangle - J_{1} \left\langle {a_{1}^{{_{\dag } }}b_{2} } \right\rangle + J_{2}^{ * } \left\langle {a_{2}^{{_{\dag }}} b_{1} } \right\rangle \right]\end{aligned} $$
$$ \frac{d}{dt}\left\langle {a_{2} a_{2} } \right\rangle = - \kappa_{2} \left\langle {a_{2} a_{2} } \right\rangle - i\left( { - 2\Delta_{2}^{^{\prime}} \left\langle {a_{2} a_{2} } \right\rangle + 2G_{2} \left\langle {a_{2} b_{2}^{{_{\dag } }} } \right\rangle + 2G_{2} \left\langle {a_{2} b_{2} } \right\rangle + 2J_{1}^{ * } \left\langle {a_{1} a_{2} } \right\rangle } \right) $$
$$ \begin{aligned}\frac{d}{dt}\left\langle {a_{2} b_{1} } \right\rangle &= \frac{{ -\kappa_{2} - \gamma_{1} }}{2}\left\langle {a_{2} b_{1} }\right\rangle - i\left[ \left( {\omega_{m1} - \Delta_{2}^{^{\prime}}} \right)\left\langle {a_{2} b_{1} } \right\rangle + G_{1}\left\langle {a_{1}^{{_{\dag } }} a_{2} } \right\rangle + G_{1}^{ *} \left\langle {a_{1} a_{2} }\right\rangle \right.\\&\quad\left. + G_{2} \left\langle {b_{1} b_{2}^{{_{\dag } }} }\right\rangle + G_{2} \left\langle {b_{1} b_{2} } \right\rangle +J_{1}^{ * } \left\langle {a_{1} b_{1} } \right\rangle + J_{2}\left\langle {a_{2} b_{2} } \right\rangle \right]\end{aligned} $$
$$ \begin{aligned}\frac{d}{dt}\left\langle {a_{2} b_{2} } \right\rangle &= \frac{{ -\kappa_{2} - \gamma_{2} }}{2}\left\langle {a_{2} b_{2} }\right\rangle - i\left[ \left( {\omega_{m2} - \Delta_{2}^{^{\prime}}} \right)\left\langle {a_{2} b_{2} } \right\rangle + G_{2}\left\langle {a_{2}^{{_{\dag } }} a_{2} } \right\rangle + G_{2}\left\langle {b_{2}^{{_{\dag } }} b_{2} }\right\rangle + G_{2}\right.\\&\quad \left. + G_{2} \left\langle {b_{2} b_{2} } \right\rangle +G_{2}^{* } \left\langle {a_{2} a_{2} } \right\rangle + J_{1}^{ * }\left\langle {a_{1} b_{2} } \right\rangle + J_{2}^{ * } \left\langle {a_{2} b_{1} } \right\rangle \right]\end{aligned} $$
$$ \frac{d}{dt}\left\langle {b_{1}^{{_{\dag } }} b_{1} } \right\rangle = - \gamma_{1} \left\langle {b_{1}^{{_{\dag } }} b_{1} } \right\rangle + \gamma_{1} \times n_{th1} - i\left( {G_{1} \left\langle {a_{1}^{{_{\dag } }} b_{1}^{{_{\dag } }} } \right\rangle - G_{1} \left\langle {a_{1}^{{_{\dag } }} b_{1} } \right\rangle + G_{1}^{ * } \left\langle {a_{1} b_{1}^{{_{\dag } }} } \right\rangle - G_{1}^{ * } \left\langle {a_{1} b_{1} } \right\rangle + J_{2} \left\langle {b_{1}^{{_{\dag } }} b_{2} } \right\rangle - J_{2}^{ * } \left\langle {b_{1} b_{2}^{{_{\dag } }} } \right\rangle } \right) $$
$$ \begin{aligned} \frac{d}{dt}\left\langle {b_{1}^{{_{\dag } }} b_{2} } \right\rangle &= \frac{{ - \gamma_{1} - \gamma_{2} }}{2}\left\langle {b_{1}^{{_{\dag } }} b_{2} } \right\rangle - i\left[ {\left( {\omega_{m2} - \omega_{m1} } \right)\left\langle {b_{1}^{{_{\dag } }} b_{2} } \right\rangle - G_{1} \left\langle {a_{1}^{{_{\dag } }} b_{2} } \right\rangle - G_{1}^{ * } \left\langle {a_{1} b_{2} } \right\rangle} \right. \\ &\quad \left.{ + G_{2} \left\langle {a_{2}^{{_{\dag } }} b_{1}^{{_{\dag } }} } \right\rangle + G_{2}^{ * } \left\langle {a_{2} b_{1}^{{_{\dag } }} } \right\rangle + J_{2}^{ * } \left\langle {b_{1} b_{1}^{{_{\dag } }} } \right\rangle - J_{2}^{ * } \left\langle {b_{2} b_{2}^{{_{\dag } }} } \right\rangle } \right] \end{aligned}$$
$$ \frac{d}{dt}\left\langle {b_{1} b_{1} } \right\rangle = - \gamma_{1} \left\langle {b_{1} b_{1} } \right\rangle - i\left( {2\omega_{m1} \left\langle {b_{1} b_{1} } \right\rangle + 2G_{1} \left\langle {a_{1}^{{_{\dag } }} b_{1} } \right\rangle + 2G_{1}^{ * } \left\langle {a_{1} b_{1} } \right\rangle + 2J_{2} \left\langle {b_{1} b_{2} } \right\rangle } \right) $$
$$ \begin{aligned} \frac{d}{dt}\left\langle {b_{1} b_{2} } \right\rangle &= \frac{{ - \gamma_{1} - \gamma_{2} }}{2}\left\langle {b_{1} b_{2} } \right\rangle - i\left[ {\left( {\omega_{m2} + \omega_{m1} } \right)\left\langle {b_{1} b_{2} } \right\rangle + G_{1} \left\langle {a_{1}^{{_{\dag } }} b_{2} } \right\rangle }\right. \\ &\quad\left. {+ G_{1}^{ * } \left\langle {a_{1} b_{2} } \right\rangle + G_{2} \left\langle {a_{2}^{{_{\dag } }} b_{1} } \right\rangle + G_{2}^{ * } \left\langle {a_{2} b_{1} } \right\rangle + J_{2} \left\langle {b_{2} b_{2} } \right\rangle + J_{2}^{ * } \left\langle {b_{1} b_{1} } \right\rangle } \right]\end{aligned} $$
$$ \begin{aligned}\frac{d}{dt}\left\langle {b_{2}^{{_{\dag } }} b_{2} } \right\rangle &= - \gamma_{2} \left\langle {b_{2}^{{_{\dag } }} b_{2} } \right\rangle + \gamma_{2} \times n_{th2} \\ &\quad- i\left( {G_{2} \left\langle {a_{2}^{{_{\dag } }} b_{2}^{{_{\dag } }} } \right\rangle - G_{2} \left\langle {a_{2}^{{_{\dag } }} b_{2} } \right\rangle + G_{2}^{ * } \left\langle {a_{2} b_{2}^{{_{\dag } }} } \right\rangle - G_{2}^{ * } \left\langle {a_{2} b_{2} } \right\rangle - J_{2} \left\langle {b_{1}^{{_{\dag } }} b_{2} } \right\rangle + J_{2}^{ * } \left\langle {b_{1} b_{2}^{{_{\dag } }} } \right\rangle } \right) \end{aligned}$$
$$ \frac{d}{dt}\left\langle {b_{2} b_{2} } \right\rangle = - \gamma_{2} \left\langle {b_{2} b_{2} } \right\rangle - i\left( {2\omega_{m2} \left\langle {b_{2} b_{2} } \right\rangle + 2G_{2} \left\langle {a_{2}^{{_{\dag } }} b_{2} } \right\rangle + 2G_{2}^{ * } \left\langle {a_{2} b_{2} } \right\rangle + 2J_{2}^{ * } \left\langle {b_{1} b_{2} } \right\rangle } \right) $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., Wu, J., Deng, W. et al. Dynamic dissipative synchronized cooling of two mechanical resonators in strong coupling optomechanics. Quantum Inf Process 20, 358 (2021). https://doi.org/10.1007/s11128-021-03219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03219-5

Keywords

Navigation