Skip to main content
Log in

Mapping a logical representation of TSP to quantum annealing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This work presents the mapping of the traveling salesperson problem (TSP) based in pseudo-Boolean constraints to a graph of the D-Wave Systems Inc. We first formulate the problem as a set of constraints represented in propositional logic and then resort to the SATyrus approach to convert the set of constraints to an energy minimization problem. Next, we transform the formulation to a quadratic unconstrained binary optimization problem (QUBO) and solve the problem using different approaches: (a) classical QUBO using simulated annealing in a von Neumann machine, (b) QUBO in a simulated quantum environment, (c) QUBO using the D-Wave quantum machine. Moreover, we study the amount of time and execution time reduction we can achieve by exploring approximate solutions using the three approaches. Results show that for every graph size tested with the number of nodes less than or equal to 7, we can always obtain at least one optimal solution. In addition, the D-Wave machine can find optimal solutions more often than its classical counterpart for the same number of iterations and number of repetitions. Execution times, however, can be some orders of magnitude higher than the classical or simulated approaches for small graphs. For a higher number of nodes, the average execution time to find the first optimal solution in the quantum machine is 26% (\(n = 6\)) and 47% (\(n = 7\)) better than the classical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. More on QPU times can be found at:https://docs.dwavesys.com/docs/latest/timing_qa_cycle_time.htmlhttps://docs.dwavesys.com/docs/latest/timing_overview.html.

  2. https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html.

  3. https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/.

References

  1. Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 1 (2018)

    Article  MathSciNet  Google Scholar 

  2. Ayanzadeh, R., Halem, M., Finin, T.: Reinforcement quantum annealing: a hybrid quantum learning automata. Sci. Rep. 10(1), 7952 (2020)

    Article  ADS  Google Scholar 

  3. Bernal, D.E., Booth, K.E.C., Dridi, R., Alghassi, H., Tayur, S., Venturelli, D.: Integer programming techniques for minor-embedding in quantum annealers. In: Hebrard, E., Musliu, N. (eds.) Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pp. 112–129. Springer, Cham (2020)

    Chapter  Google Scholar 

  4. Booth, K.E.C., O’Gorman, B., Marshall, J., Hadfield, S., Rieffel, E.: Quantum-accelerated global constraint filtering. In: Simonis, H. (ed.) Principles and Practice of Constraint Programming, pp. 72–89. Springer, Cham (2020)

  5. Boothby, K., Bunyk, P., Raymond, J., Roy, A.: Next-generation topology of D-wave quantum processors. arXiv e-prints arXiv:2003.00133 (2020)

  6. Borowski, M., Gora, P., Karnas, K., Błajda, M., Król, K., Matyjasek, A., Burczyk, D., Szewczyk, M., Kutwin, M.: New hybrid quantum annealing algorithms for solving vehicle routing problem. In: Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J. (eds.) Computational Science - ICCS 2020, pp. 546–561. Springer, Cham (2020)

    Chapter  Google Scholar 

  7. Dai, S.: A note on implication operators of quantum logic. Quantum Mach. Intell. 2(2), 15 (2020)

    Article  Google Scholar 

  8. Dattani, N., Chancellor, N.: Embedding quadratization gadgets on chimera and pegasus graphs. arXiv:1901.07676 (2019)

  9. Djidjev, H.N., Chapuis, G., Hahn, G., Rizk, G.: Efficient combinatorial optimization using quantum annealing. arXiv:1801.08653 (2018)

  10. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv e-prints pp quant–ph/0001106 (2000)

  11. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985)

    MATH  Google Scholar 

  13. Hu, F., Lamata, L., Sanz, M., Chen, X., Chen, X., Wang, C., Solano, E.: Quantum computing cryptography: finding cryptographic Boolean functions with quantum annealing by a 2000 qubit d-wave quantum computer. Phys. Lett. A 384(10), 126214 (2020)

    Article  Google Scholar 

  14. Hussain, H., Javaid, M.B., Khan, F.S., Dalal, A., Khalique, A.: Optimal control of traffic signals using quantum annealing. Quantum Inf. Process. 19(9), 312 (2020)

    Article  ADS  Google Scholar 

  15. Inc DWS. D-wave. https://www.dwavesys.com (2020)

  16. Inc DWS. Leap. https://cloud.dwavesys.com/leap/ (2020)

  17. Jalowiecki, K., Wieckowski, A., Gawron, P., Gardas, B.: Parallel in time dynamics with quantum annealers. Sci. Rep. 10(1), 13534 (2020)

    Article  ADS  Google Scholar 

  18. Li, R.Y., Di Felice, R., Rohs, R., Lidar, D.A.: Quantum annealing versus classical machine learning applied to a simplified computational biology problem. npj Quantum Inf. 4(1), 14 (2018)

  19. Lima, P.M.V., Pereira, G.C., Morveli-Espinoza, M.M.M., França, F.M.G.: Mapping and combining combinatorial problems into energy landscapes via pseudo-Boolean constraints. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) Brain Vis. Artif. Intell., pp. 308–317. Springer, Berlin (2005)

  20. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2 (2014)

  21. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  22. Mańdziuk, J.: Solving the travelling salesman problem with a hopfield-type neural network. Demonstr. Math. 29(1), 219–232 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Martoňák, R., Santoro, G.E., Tosatti, E.: Quantum annealing of the traveling-salesman problem. Phys. Rev. E 70(5) (2004)

  24. McGeoch, C.C.: Theory versus practice in annealing-based quantum computing. Theor. Comput. Sci. 816, 169–183 (2020)

    Article  MathSciNet  Google Scholar 

  25. Mishra, A., Albash, T., Lidar, D.A.: Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability. Nat. Commun. 9(1), 2917 (2018)

    Article  ADS  Google Scholar 

  26. Negre, C.F., Ushijima-Mwesigwa, H., Mniszewski, S.M.: Detecting multiple communities using quantum annealing on the d-wave system. PLoS ONE 15(2), e0227538 (2020)

    Article  Google Scholar 

  27. Nimbe, P., Weyori, B.A., Adekoya, A.F.: Models in quantum computing: a systematic review. Quantum Inf. Process. 20(2), 80 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Ohzeki, M.: Breaking limitation of quantum annealer in solving optimization problems under constraints. Sci. Rep. 10(1), 3126 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Okada, S., Ohzeki, M., Terabe, M., Taguchi, S.: Improving solutions by embedding larger subproblems in a d-wave quantum annealer. Sci. Rep. 9(1), 1–10 (2019)

    Google Scholar 

  30. Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann. Oper. Res. 131(1), 259–282 (2004)

    Article  MathSciNet  Google Scholar 

  31. Pastorello, D., Blanzieri, E.: Quantum annealing learning search for solving qubo problems. Quantum Inf. Process. 18(10), 303 (2019)

    Article  ADS  Google Scholar 

  32. Pearson, A., Mishra, A., Hen, I., Lidar, D.A.: Analog errors in quantum annealing: doom and hope. NPJ Quantum Inf. 5, 1–9 (2019)

    Article  Google Scholar 

  33. Potvin, J.Y.: State-of-the-art survey-the traveling salesman problem: a neural network perspective. ORSA J. Comput. 5(4), 328–348 (1993)

    Article  Google Scholar 

  34. Raymond, J., Ndiaye, N., Rayaprolu, G., King, A.D.: Improving performance of logical qubits by parameter tuning and topology compensation. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (2020)

  35. Reichardt, B.W.: The quantum adiabatic optimization algorithm and local minima. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, NY, USA, STOC’04, pp. 502–510 (2004)

  36. Silva, C., Dutra, I.: Code [available]. https://github.com/cmaps/tsp-quantumannealing (2020)

  37. Silva, C., Aguiar, A., Lima, P.M.V., Dutra, I.: Mapping graph coloring to quantum annealing. Quantum Mach. Intell. 2(2), 16 (2020)

    Article  Google Scholar 

  38. Srinivasan, K., Satyajit, S., Behera, B.K., Panigrahi, P.K.: Efficient quantum algorithm for solving travelling salesman problem: an ibm quantum experience. arXiv:1805.10928 (2018)

  39. Streif, M., Neukart, F., Leib, M.: Solving quantum chemistry problems with a d-wave quantum annealer. In: International Workshop on Quantum Technology and Optimization Problems. Springer, pp. 111–122 (2019)

  40. Tan, K., Tang, H., Ge, S.: On parameter settings of hopfield networks applied to traveling salesman problems. IEEE Trans. Circuits Syst. I Regul. Pap. 52(5), 994–1002 (2005)

  41. Wang, C., Chen, H., Jonckheere, E.: Quantum versus simulated annealing in wireless interference network optimization. Sci. Rep. 6(1), 25797 (2016)

    Article  ADS  Google Scholar 

  42. Warren, R.H.: Solving the traveling salesman problem on a quantum annealer. SN Appl. Sci. 2(1), 75 (2019)

    Article  Google Scholar 

  43. Zaman, M., Tanahashi, K., Tanaka, S.: Pyqubo: python library for mapping combinatorial optimization problems to qubo form. arXiv:2103.01708 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Dutra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C., Aguiar, A., Lima, P.M.V. et al. Mapping a logical representation of TSP to quantum annealing. Quantum Inf Process 20, 386 (2021). https://doi.org/10.1007/s11128-021-03321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03321-8

Keywords

Navigation