Skip to main content
Log in

Conclusive multiparty quantum state sharing in amplitude-damping channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, two conclusive multiparty quantum state sharing protocols in amplitude damping channel are proposed that, respectively share an arbitrary unknown single-qubit state and single-qutrit state. To achieve this aim, the detailed processes of sharing pure entangled quantum states as quantum channel in amplitude damping channel via entanglement compensation is proposed first. Then, based on the pure entangled quantum state shared among dealer and all agents, the dealer’s secret quantum information, i.e., single-qubit state (or single-qutrit state) is split in such a way that it can be probabilistically reconstructed through introducing an auxiliary qubit (or qutrit) and performing appropriate operations provided that all the receivers collaborate together. Through the analysis, we have found that whether in single-qubit or single-qutrit state sharing protocols, the successful probability of receiver recovering the secret quantum information is only determined by the small one among the absolute values of the coefficients characterizing the quantum channel. In addition, through the analysis, it proves that the conclusive multiparty single-qutrit state sharing has higher efficiency than single-qubit state sharing under the same amplitude damping strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Sun, Y., Gao, F., Yuan, Z., et al.: Splitting quantum secret without the assistance of entanglements. Quantum Inf. Process. 11(6), 1741–1750 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Debashis, S., Prasanta, K.P.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)

    MathSciNet  Google Scholar 

  4. Bennett C.H., Brassard G.: Quantum cryptography Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984).

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Vahid, K., Alireza, B., Saber, B.: Quantum key distribution for d-level systems with generalized Bell states. Phys. Rev. A 65(5), 052331 (2002)

    Google Scholar 

  7. Yang, K., Huang, L., Yang, W., et al.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Zhou, R.G., Xu, R.Q., Ian, H.: Bidirectional quantum teleportation by using six-qubit cluster state. IEEE Access 7, 44269–44275 (2019)

    Google Scholar 

  9. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Gao, Z.K., Li, T., Li, Z.H.: Deterministic measurement-device-independent quantum secret sharing. Sci. China-Phys. Mech. Astron. 63, 120311 (2020)

    ADS  Google Scholar 

  11. Hu, W.W., Zhou, R.G., Li, X., et al.: A novel dynamic quantum secret sharing in high-dimensional quantum system. Quantum Inf. Process. 20(5), 159 (2021)

    ADS  MathSciNet  Google Scholar 

  12. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    ADS  Google Scholar 

  13. Xu, G., Xiao, K., Li, Z.P., et al.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. Cmc-Comput. Mater. Con. 58(3), 809–827 (2019)

    Google Scholar 

  14. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011)

    ADS  Google Scholar 

  15. Yang, Y.G., Liu, Z.C., Chen, X.B., et al.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Sci. China-Phys. Mech. Astron. 60(12), 120311 (2017)

    ADS  Google Scholar 

  16. Zhou, R.G., Hua, Y.: Quantum private query using W state. Int. J. Theor. Phys. 60(7), 2531–2542 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Symul, T., Bowen, W.P., et al.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    ADS  Google Scholar 

  18. Li, Y.M., Zhang, K.S., Peng, K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420–424 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A. 72(4), 044301 (2005)

    ADS  Google Scholar 

  20. Li, X.H., Zhou, P., Li, C.Y., et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B 39(8), 1795–1983 (2006)

    Google Scholar 

  21. Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum secret splitting and quantum state sharing. Phys. Lett. A 354, 190–195 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Gordon, G., Rigolin, G.: Generalized quantum-state sharing. Phys. Rev. A 73(6), 062316 (2006)

    ADS  Google Scholar 

  23. Wang, Z.Y., Liu, Y.M., Wang, D., et al.: Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt. Commun. 276(2), 322–326 (2007)

    ADS  MathSciNet  Google Scholar 

  24. Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 42, 333–340 (2007)

    ADS  MathSciNet  Google Scholar 

  25. Wang, Z.Y., Yuan, H., Shi, S.H., Zhang, Z.J.: Three-party qutrit-state sharing. Eur. Phys. J. D 41(2), 371–375 (2007)

    ADS  MathSciNet  Google Scholar 

  26. Liu, J., Liu, Y.M., Zhang, Z.J.: Generalized multiparty quantum single-qutrit-state sharing. Int. J. Theor. Phys. 47(9), 2353–2362 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Wang, T.J., Zhou, H.Y., Deng, F.G.: Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements. Phys. A 387(18), 4716–4722 (2008)

    MathSciNet  Google Scholar 

  28. Yuan, H., Liu, Y.M., Han, L.F., Zhang, Z.J.: Tripartite arbitrary two-qutrit quantum state sharing. Commun. Theor. Phys. 49(5), 1191–1194 (2008)

    ADS  MATH  Google Scholar 

  29. Wei, Y., Jiang, M.: Multi-qudit state sharing via various high-dimensional Bell channels. Quantum Inf. Process. 14, 1091 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Qin, H., Tso, R., Dai, Y.W.: Multi-dimensional quantum state sharing based on quantum Fourier transform. Quantum Inf. Process. 17, 48 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Qin, H.W., Tso, R.L.: Threshold quantum state sharing based on entanglement swapping. Quantum Inf. Process. 17, 142 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Lee, S.M., Lee, S.W., Jeong, H., Park, H.S.: Quantum teleportation of shared quantum secret. Phys. Rev. Letts. 124, 060501 (2020)

    ADS  MathSciNet  Google Scholar 

  33. Ma, L.Y.: Two-qubit quantum state sharing protocol based on Bell state. Int. J. Theor. Phys. 59, 1844–1853 (2020)

    MATH  Google Scholar 

  34. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Letts. 93(14), 140404 (2004)

    ADS  Google Scholar 

  35. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge, England (2010)

    MATH  Google Scholar 

  36. Fonseca, A.: High-dimensional quantum teleportation under noisy environments. Phys. Rev. A 100, 062311 (2019)

    ADS  Google Scholar 

  37. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19(17), 16309–16316 (2011)

    ADS  Google Scholar 

  38. Huang, J.: The protection of qudit states by weak measurement. Acta Physica Sinica 66(10), 010301 (2017)

    Google Scholar 

  39. Li, W.J., Zhao, Y.H., Leng, Y.: Protecting high-dimensional quantum entanglement from the amplitude phase decoherence sources by weak measurement and reversal. Laser Phys. 29(6), 065204 (2019)

    ADS  Google Scholar 

  40. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377, 3209–3215 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Bai, C.M., Li, Z.H., Li, Y.M.: Improving fidelity of quantum secret sharing in noisy environments. Eur. Phys. J. D 72(7), 126 (2018)

    ADS  Google Scholar 

  42. Bai, C.M., Li, J., Zhang, S.J., Liu, L.: Improving fidelity of quantum secret sharing by weak measurement. Laser Phys. Lett. 17(2), 025205 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 6217070290 and Shanghai Science and Technology Project under Grant No. 21JC1402800 and 20040501500; the Hunan Provincial Natural Science Foundation of China under Grant No. 2020JJ4557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript.

Consent to publication

The manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Theorem 1

Theorem 1

On condition that Alice prepares two-qubit maximal entangled Bell state \(\left| {B_{0,0} } \right\rangle = {1 \mathord{\left/ {\vphantom {1 {\sqrt 2 }}} \right. \kern-0pt} {\sqrt 2 }}\left( {\left| {00} \right\rangle + \left| {11} \right\rangle } \right)_{{{\text{A}}_{1} {\text{A}}_{2} }}\), when she measures qubit A2 in Z-basis and obtains the result \(\left| 0 \right\rangle\) in Step 1.4 of Sect. 3.1, Alice shares three-qubit pure entangled state \(\left| \Phi \right\rangle_{{{\text{A}}_{{1}} {\text{BC}}}} = {1 \mathord{\left/ {\vphantom {1 {\sqrt {1 + \left( {1 - D} \right)^{3} } }}} \right. \kern-0pt} {\sqrt {1 + \left( {1 - D} \right)^{3} } }}\left( {\left| {000} \right\rangle + \sqrt {\left( {1 - D} \right)^{3} } \left| {111} \right\rangle } \right)_{{{\text{A}}_{{1}} {\text{BC}}}}\) with Bob and Charlie.

Proof 1

When Alice sends the qubit A2 to Bob via amplitude damping channel, the density matrix of two-qubit A1 and A2 can be expressed as:

$$ \begin{gathered} \rho_{b} = \varepsilon \left( \rho \right) = \sum\nolimits_{i = 0}^{1} {\left( {I \otimes K_{i} } \right) * \rho * \left( {I \otimes K_{i} } \right)^{\dag } } \hfill \\ \quad = \frac{1}{2}\left| {00} \right\rangle \left\langle {00} \right| + \frac{1}{2}\sqrt {1 - D} \left| {00} \right\rangle \left\langle {11} \right| + \frac{1}{2}\sqrt {1 - D} \left| {11} \right\rangle \left\langle {00} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{2}D\left| {10} \right\rangle \left\langle {10} \right| + \frac{1}{2}\left( {1 - D} \right)\left| {11} \right\rangle \left\langle {11} \right| \hfill \\ \end{gathered} $$
(A1)

where \(\rho = \left| {B_{0,0} } \right\rangle_{{{\text{A}}_{1} {\text{A}}_{2} }} \left\langle {B_{0,0} } \right|\), and \(\rho_{b}\) is the density matrix of qubits (A1, A2) when Bob receives the qubit A2.

When Bob performs the CNOT operation on qubit A2 and ancillary qubit \(\left| 0 \right\rangle_{B}\), the density matrix of three qubits (A1, A2, B) is written as:

$$ \begin{aligned} \rho_{b}^{ * } = & \frac{1}{2}\left| {000} \right\rangle \left\langle {000} \right| + \frac{1}{2}\sqrt {1 - D} \left| {000} \right\rangle \left\langle {111} \right| + \frac{1}{2}\sqrt {1 - D} \left| {111} \right\rangle \left\langle {000} \right| \\ & + \frac{1}{2}D\left| {100} \right\rangle \left\langle {100} \right| + \frac{1}{2}\left( {1 - D} \right)\left| {111} \right\rangle \left\langle {111} \right| \\ \end{aligned} $$
(A2)

Then, Bob further sends qubit A2 to Charlie via amplitude damping channel. When Charlie receives the qubit A2, the density matrix of three qubits (A1, A2, B) evolves into:

$$ \begin{gathered} \rho_{c} = \varepsilon \left( {\rho_{b}^{ * } } \right) = \sum\nolimits_{i = 0}^{1} {\left( {I \otimes K_{i} \otimes I} \right) * \rho_{b}^{ * } * \left( {I \otimes K_{i} \otimes I} \right)^{\dag } } \hfill \\ \quad \,\, = \frac{1}{2}\left| {000} \right\rangle \left\langle {000} \right| + \frac{1}{2}\left( {1 - D} \right)\left| {000} \right\rangle \left\langle {111} \right| + \frac{1}{2}\left( {1 - D} \right)\left| {111} \right\rangle \left\langle {000} \right| + \frac{1}{2}D\left| {100} \right\rangle \left\langle {100} \right| \hfill \\ \quad \,\,\,\,\, + \frac{1}{2}D\left( {1 - D} \right)\left| {101} \right\rangle \left\langle {101} \right| + \frac{1}{2}\left( {1 - D} \right)^{2} \left| {111} \right\rangle \left\langle {111} \right| \hfill \\ \end{gathered} $$
(A3)

When Charlie performs the CNOT operation on qubit A2 and ancillary qubit \(\left| 0 \right\rangle_{C}\), the density matrix of four qubit (A1, A2, B, C) is written as:

$$ \begin{aligned} \rho_{c}^{ * } = & \frac{1}{2}\left| {0000} \right\rangle \left\langle {0000} \right| + \frac{1}{2}\left( {1 - D} \right)\left| {0000} \right\rangle \left\langle {1111} \right| \\ & + \frac{1}{2}\left( {1 - D} \right)\left| {1111} \right\rangle \left\langle {0000} \right| + \frac{1}{2}D\left| {1000} \right\rangle \left\langle {1000} \right| \\ & + \frac{1}{2}D\left( {1 - D} \right)\left| {1010} \right\rangle \left\langle {1010} \right| + \frac{1}{2}\left( {1 - D} \right)^{2} \left| {1111} \right\rangle \left\langle {1111} \right| \\ \end{aligned} $$
(A4)

Then, Charlie sends qubit A2 to Alice via amplitude damping channel. When Alice receives the qubit A2, the density matrix of four qubit (A1, A2, B, C) evolves into:

$$ \begin{gathered} \rho_{a} = \varepsilon \left( {\rho_{c}^{ * } } \right) = \sum\nolimits_{i = 0}^{1} {\left( {I \otimes K_{i} \otimes I \otimes I} \right) * \rho_{c}^{ * } * \left( {I \otimes K_{i} \otimes I \otimes I} \right)^{\dag } } \hfill \\ \quad \,\, = \frac{1}{2}\left| {0000} \right\rangle \left\langle {0000} \right| + \frac{1}{2}\sqrt {\left( {1 - D} \right)^{3} } \left| {0000} \right\rangle \left\langle {1111} \right| \hfill \\ \quad \,\,\,\,\, + \frac{1}{2}\sqrt {\left( {1 - D} \right)^{3} } \left| {1111} \right\rangle \left\langle {0000} \right| + \frac{1}{2}D\left| {1000} \right\rangle \left\langle {1000} \right| \hfill \\ \quad \,\,\,\,\, + \frac{1}{2}D\left( {1 - D} \right)^{2} \left| {1010} \right\rangle \left\langle {1010} \right| + \frac{1}{2}\left( {1 - D} \right)^{3} \left| {1111} \right\rangle \left\langle {1111} \right| \hfill \\ \end{gathered} $$
(A5)

Final, Alice first performs the CNOT operation on two qubits (A1, A2), the density matrix of four qubit (A1, A2, B, C) evolves into:

$$ \begin{aligned} \rho_{a}^{ * } = & \frac{1}{2}\left| {0000} \right\rangle \left\langle {0000} \right| + \frac{1}{2}\sqrt {\left( {1 - D} \right)^{3} } \left| {0000} \right\rangle \left\langle {1011} \right| \\ & + \frac{1}{2}\sqrt {\left( {1 - D} \right)^{3} } \left| {1011} \right\rangle \left\langle {0000} \right| + \frac{1}{2}D\left| {1100} \right\rangle \left\langle {1100} \right| \\ & + \frac{1}{2}D\left( {1 - D} \right)^{2} \left| {1110} \right\rangle \left\langle {1110} \right| + \frac{1}{2}\left( {1 - D} \right)^{3} \left| {1011} \right\rangle \left\langle {1011} \right| \\ \end{aligned} $$
(A6)

Hence, when Alice measures qubit A2 in Z-basis \(\left\{ {\left| 0 \right\rangle ,\left| 1 \right\rangle } \right\}\), it would disentangle the qubit A2 with other three qubits (A1, B, C). If she obtains the result \(\left| 0 \right\rangle\), the density matrix of three qubits (A1, B, C) is collapsed to:

$$ \begin{gathered} \rho_{{{\text{A}}_{{1}} {\text{BC}}}} = \frac{1}{2}\left| {000} \right\rangle \left\langle {000} \right| + \frac{1}{2}\sqrt {\left( {1 - D} \right)^{3} } \left| {000} \right\rangle \left\langle {111} \right| \hfill \\ \quad \quad \quad + \frac{1}{2}\sqrt {\left( {1 - D} \right)^{3} } \left| {111} \right\rangle \left\langle {000} \right| + \frac{1}{2}\left( {1 - D} \right)^{3} \left| {111} \right\rangle \left\langle {111} \right| \hfill \\ \quad \quad \,\, = \frac{1}{\sqrt 2 }\left( {\left| {000} \right\rangle + \sqrt {\left( {1 - D} \right)^{3} } \left| {111} \right\rangle } \right)\frac{1}{\sqrt 2 }\left( {\left\langle {000} \right| + \sqrt {\left( {1 - D} \right)^{3} } \left\langle {111} \right|} \right) \hfill \\ \end{gathered} $$
(A7)

After renormalization of above Eq. (A7), Alice shares the pure entangled state with two agents Bob and Charlie written as:

$$ \left| \Phi \right\rangle_{{{\text{A}}_{{1}} {\text{BC}}}} = {1 \mathord{\left/ {\vphantom {1 {\sqrt {1 + \left( {1 - D} \right)^{3} } }}} \right. \kern-0pt} {\sqrt {1 + \left( {1 - D} \right)^{3} } }}\left( {\left| {000} \right\rangle + \sqrt {\left( {1 - D} \right)^{3} } \left| {111} \right\rangle } \right)_{{{\text{A}}_{{1}} {\text{BC}}}} $$
(A8)

Appendix 2: Proof of Theorem 2

Theorem 2

On condition that Alice prepares the generalized Bell state \(\left| {GB_{0,0} } \right\rangle = {1 \mathord{\left/ {\vphantom {1 {\sqrt 3 }}} \right. \kern-0pt} {\sqrt 3 }}\left( {\left| {00} \right\rangle + \left| {11} \right\rangle + \left| {22} \right\rangle } \right)_{{{\text{A}}_{1} {\text{A}}_{2} }}\), when she measures qutrit A2 in Z-basis and obtains the result \(\left| 0 \right\rangle\) in Step 1.4 of Sect4.1, Alice shares the pure entangled state \(\left| \Psi \right\rangle_{{{\text{A}}_{{1}} {\text{BC}}}} = {1 \mathord{\left/ {\vphantom {1 {\sqrt {1 + 2\left( {1 - D} \right)^{3} } }}} \right. \kern-0pt} {\sqrt {1 + 2\left( {1 - D} \right)^{3} } }}\left( {\left| {000} \right\rangle + \sqrt {\left( {1 - D} \right)^{3} } \left| {111} \right\rangle + \sqrt {\left( {1 - D} \right)^{3} } \left| {222} \right\rangle } \right)_{{{\text{A}}_{{1}} {\text{BC}}}}\) with Bob and Charlie.

Proof 2

When Alice sends the qutrit A2 to Bob via amplitude damping channel, the density matrix of qutrits (A1, A2) can be expressed as:

$$ \begin{gathered} \rho_{b} = \varepsilon \left( \rho \right) = \sum\nolimits_{i = 0}^{2} {\left( {I \otimes F_{i} } \right) * \rho * \left( {I \otimes F_{i} } \right)^{\dag } } \hfill \\ \quad \, = \frac{1}{3}\left| {00} \right\rangle \left\langle {00} \right| + \frac{1}{3}\sqrt {1 - D} \left| {00} \right\rangle \left\langle {11} \right| + \frac{1}{3}\sqrt {1 - D} \left| {00} \right\rangle \left\langle {22} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}D\left| {10} \right\rangle \left\langle {10} \right| + \frac{1}{3}\sqrt {1 - D} \left| {11} \right\rangle \left\langle {00} \right| + \frac{1}{3}\left( {1 - D} \right)\left| {11} \right\rangle \left\langle {11} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}\left( {1 - D} \right)\left| {11} \right\rangle \left\langle {22} \right| + \frac{1}{3}D\left| {20} \right\rangle \left\langle {20} \right| + \frac{1}{3}\sqrt {1 - D} \left| {22} \right\rangle \left\langle {00} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}\left( {1 - D} \right)\left| {22} \right\rangle \left\langle {11} \right| + \frac{1}{3}\left( {1 - D} \right)\left| {22} \right\rangle \left\langle {22} \right| \hfill \\ \end{gathered} $$
(A9)

where \(\rho = \left| {GB_{0,0} } \right\rangle_{{{\text{A}}_{1} {\text{A}}_{2} }} \left\langle {GB_{0,0} } \right|\), and \(\rho_{b}\) is the density matrix of qutrits (A1, A2) when Bob receives the qutrit A2.

When Bob performs the GCNOT operation on qutrit A2 and ancillary qutrit \(\left| 0 \right\rangle_{{\text{B}}}\), the density matrix of three qutrits (A1, A2, B) is written as:

$$ \begin{aligned} \rho_{b}^{ * } = & \frac{1}{3}\left| {000} \right\rangle \left\langle {000} \right| + \frac{1}{3}\sqrt {1 - D} \left| {000} \right\rangle \left\langle {111} \right| \\ & + \frac{1}{3}\sqrt {1 - D} \left| {000} \right\rangle \left\langle {222} \right| + \frac{1}{3}D\left| {100} \right\rangle \left\langle {100} \right| \\ & + \frac{1}{3}\sqrt {1 - D} \left| {111} \right\rangle \left\langle {000} \right| + \frac{1}{3}\left( {1 - D} \right)\left| {111} \right\rangle \left\langle {111} \right| \\ & + \frac{1}{3}\left( {1 - D} \right)\left| {111} \right\rangle \left\langle {222} \right| + \frac{1}{3}D\left| {200} \right\rangle \left\langle {200} \right| \\ & + \frac{1}{3}\sqrt {1 - D} \left| {222} \right\rangle \left\langle {000} \right| + \frac{1}{3}\left( {1 - D} \right)\left| {222} \right\rangle \left\langle {111} \right| \\ & + \frac{1}{3}\left( {1 - D} \right)\left| {222} \right\rangle \left\langle {222} \right| \\ \end{aligned} $$
(A10)

Then, Bob sends qutrit A2 to Charlie via amplitude damping channel. When Charlie receives the qutrit A2, the density matrix of three qutrits (A1, A2, B) evolves into:

$$ \begin{gathered} \rho_{c} { = }\varepsilon \left( {\rho_{b}^{ * } } \right){ = }\sum\nolimits_{i = 0}^{2} {\left( {I \otimes F_{i} \otimes I} \right) * \rho_{b}^{ * } * \left( {I \otimes F_{i} \otimes I} \right)^{\dag } } \hfill \\ \quad = \frac{1}{3}\left| {000} \right\rangle \left\langle {000} \right| + \frac{1}{3}\left( {1 - D} \right)\left| {000} \right\rangle \left\langle {111} \right| + \frac{1}{3}\left( {1 - D} \right)\left| {000} \right\rangle \left\langle {222} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}D\left| {100} \right\rangle \left\langle {100} \right| + \frac{1}{3}D\left( {1 - D} \right)\left| {101} \right\rangle \left\langle {101} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}\left( {1 - D} \right)\left| {111} \right\rangle \left\langle {000} \right| + \frac{1}{3}\left( {1 - D} \right)^{2} \left| {111} \right\rangle \left\langle {111} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}\left( {1 - D} \right)^{2} \left| {111} \right\rangle \left\langle {222} \right| + \frac{1}{3}D\left| {200} \right\rangle \left\langle {200} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}D\left( {1 - D} \right)\left| {202} \right\rangle \left\langle {202} \right| + \frac{1}{3}\left( {1 - D} \right)\left| {222} \right\rangle \left\langle {000} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}\left( {1 - D} \right)^{2} \left| {222} \right\rangle \left\langle {111} \right| + \frac{1}{3}\left( {1 - D} \right)^{2} \left| {222} \right\rangle \left\langle {222} \right| \hfill \\ \end{gathered} $$
(A11)

When Charlie performs the GCNOT operation on qutrit A2 and ancillary qutrit \(\left| 0 \right\rangle_{C}\), the density matrix of four qutrits (A1, A2, B, C) is written as:

$$ \begin{aligned} \rho_{c}^{ * } = & \frac{1}{3}\left| {0000} \right\rangle \left\langle {0000} \right| + \frac{1}{3}\left( {1 - D} \right)\left| {0000} \right\rangle \left\langle {1111} \right| \\ & + \frac{1}{3}\left( {1 - D} \right)\left| {0000} \right\rangle \left\langle {2222} \right| + \frac{1}{3}D\left| {1000} \right\rangle \left\langle {1000} \right| \\ & + \frac{1}{3}D\left( {1 - D} \right)\left| {1010} \right\rangle \left\langle {1010} \right| + \frac{1}{3}\left( {1 - D} \right)\left| {1111} \right\rangle \left\langle {0000} \right| \\ & + \frac{1}{3}\left( {1 - D} \right)^{2} \left| {1111} \right\rangle \left\langle {1111} \right| \\ & + \frac{1}{3}\left( {1 - D} \right)^{2} \left| {1111} \right\rangle \left\langle {2222} \right| + \frac{1}{3}D\left| {2000} \right\rangle \left\langle {2000} \right| \\ & + \frac{1}{3}D\left( {1 - D} \right)\left| {2020} \right\rangle \left\langle {2020} \right| \\ & + \frac{1}{3}\left( {1 - D} \right)\left| {2222} \right\rangle \left\langle {0000} \right| + \frac{1}{3}\left( {1 - D} \right)^{2} \left| {2222} \right\rangle \left\langle {1111} \right| \\ & + \frac{1}{3}\left( {1 - D} \right)^{2} \left| {2222} \right\rangle \left\langle {2222} \right| \\ \end{aligned} $$
(A12)

Then, Charlie sends qutrit A2 to Alice via amplitude damping channel. When Alice receives the qutrit A2, the density matrix of four qutrit (A1, A2, B, C) evolves into:

$$ \begin{gathered} \rho_{a} = \varepsilon \left( {\rho_{c}^{ * } } \right) = \sum\nolimits_{i = 0}^{2} {\left( {I \otimes F_{i} \otimes I \otimes I} \right) * \rho_{c}^{ * } * \left( {I \otimes F_{i} \otimes I \otimes I} \right)^{\dag } } \hfill \\ \quad \, = \frac{1}{3}\left| {0000} \right\rangle \left\langle {0000} \right| + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {0000} \right\rangle \left\langle {1111} \right| + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {0000} \right\rangle \left\langle {2222} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}D\left| {1000} \right\rangle \left\langle {1000} \right| + \frac{1}{3}D\left( {1 - D} \right)\left| {1010} \right\rangle \left\langle {1010} \right| + \frac{1}{3}D\left( {1 - D} \right)^{2} \left| {1011} \right\rangle \left\langle {1011} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {1111} \right\rangle \left\langle {0000} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {1111} \right\rangle \left\langle {1111} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {1111} \right\rangle \left\langle {2222} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}D\left| {2000} \right\rangle \left\langle {2000} \right| + \frac{1}{3}D\left( {1 - D} \right)\left| {2020} \right\rangle \left\langle {2020} \right| + \frac{1}{3}D\left( {1 - D} \right)^{2} \left| {2022} \right\rangle \left\langle {2022} \right| \hfill \\ \quad \,\,\,\, + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {2222} \right\rangle \left\langle {0000} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {2222} \right\rangle \left\langle {1111} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {2222} \right\rangle \left\langle {2222} \right| \hfill \\ \end{gathered} $$
(A13)

Final, Alice first performs the IGCNOT operation on two qutrits (A1, A2), the density matrix of four qutrit (A1, A2, B, C) evolves into:

$$ \begin{aligned} \rho_{a}^{ * } = & \frac{1}{3}\left| {0000} \right\rangle \left\langle {0000} \right| + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {0000} \right\rangle \left\langle {1011} \right| + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {0000} \right\rangle \left\langle {2022} \right| \\ & + \frac{1}{3}D\left| {1100} \right\rangle \left\langle {1100} \right| + \frac{1}{3}D\left( {1 - D} \right)\left| {1110} \right\rangle \left\langle {1110} \right| + \frac{1}{3}D\left( {1 - D} \right)^{2} \left| {1111} \right\rangle \left\langle {1111} \right| \\ & + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {1011} \right\rangle \left\langle {0000} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {1011} \right\rangle \left\langle {1011} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {1011} \right\rangle \left\langle {2022} \right| \\ & + \frac{1}{3}D\left| {2200} \right\rangle \left\langle {2200} \right| + \frac{1}{3}D\left( {1 - D} \right)\left| {2220} \right\rangle \left\langle {2220} \right| + \frac{1}{3}D\left( {1 - D} \right)^{2} \left| {2222} \right\rangle \left\langle {2222} \right| \\ & + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {2022} \right\rangle \left\langle {0000} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {2022} \right\rangle \left\langle {1011} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {2022} \right\rangle \left\langle {2022} \right| \\ \end{aligned} $$
(A14)

Hence, when Alice measures qutrit A2 in Z-basis \(\left\{ {\left| 0 \right\rangle ,\left| 1 \right\rangle ,\left| 2 \right\rangle } \right\}\), it would disentangle the qutrit A2 with other three qutrits (A1, B, C). If she obtains the result \(\left| 0 \right\rangle\), the density matrix of three qutrits (A1, B, C) can be expressed as:

$$ \begin{gathered} \rho_{{{\text{A}}_{{1}} {\text{BC}}}} = \frac{1}{3}\left| {000} \right\rangle \left\langle {000} \right| + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {000} \right\rangle \left\langle {111} \right| + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {000} \right\rangle \left\langle {222} \right| \hfill \\ \quad \quad \,\,\,\, + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {111} \right\rangle \left\langle {000} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {111} \right\rangle \left\langle {111} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {111} \right\rangle \left\langle {222} \right| \hfill \\ \quad \quad \,\,\,\, + \frac{1}{3}\sqrt {\left( {1 - D} \right)^{3} } \left| {222} \right\rangle \left\langle {000} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {222} \right\rangle \left\langle {111} \right| + \frac{1}{3}\left( {1 - D} \right)^{3} \left| {222} \right\rangle \left\langle {222} \right| \hfill \\ \quad \quad \,{ = }\frac{1}{\sqrt 3 }\left( {\left| {000} \right\rangle + \sqrt {\left( {1 - D} \right)^{3} } \left| {111} \right\rangle + \sqrt {\left( {1 - D} \right)^{3} } \left| {222} \right\rangle } \right)\frac{1}{\sqrt 3 }\left( {\left\langle {000} \right| + \sqrt {\left( {1 - D} \right)^{3} } \left\langle {111} \right| + \sqrt {\left( {1 - D} \right)^{3} } \left\langle {222} \right|} \right) \hfill \\ \end{gathered} $$
(A15)

After renormalization of above Eq. (A15), Alice now shares the pure entangled state with two agents Bob and Charlie written as:

$$ \left| \Psi \right\rangle_{{{\text{A}}_{{1}} {\text{BC}}}} = {1 \mathord{\left/ {\vphantom {1 {\sqrt {1 + 2\left( {1 - D} \right)^{3} } }}} \right. \kern-0pt} {\sqrt {1 + 2\left( {1 - D} \right)^{3} } }}\left( {\left| {000} \right\rangle + \sqrt {\left( {1 - D} \right)^{3} } \left| {111} \right\rangle + \sqrt {\left( {1 - D} \right)^{3} } \left| {222} \right\rangle } \right)_{{{\text{A}}_{{1}} {\text{BC}}}} $$
(A16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W.W., Zhou, RG. & Luo, G.F. Conclusive multiparty quantum state sharing in amplitude-damping channel. Quantum Inf Process 21, 3 (2022). https://doi.org/10.1007/s11128-021-03333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03333-4

Keywords

Navigation