Skip to main content
Log in

Solving Bernstein and Vazirani’s Problem with the 2-bit Permutation Function

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel quantum algorithm, based on the Bernstein–Vazirani algorithm, for finding \(a\) if the function \(f\left( x \right) = a \cdot {\uppi }\left( x \right)\), where \(a,x \in \left\{ {0,1} \right\}^{2}\) and \({\uppi }\left( x \right)\) is a 2-bit permutation function. Note that the Bernstein–Vazirani algorithm cannot find \(a\) when we select the function \(f\left( x \right) = a \cdot {\uppi }\left( x \right)\), where \({\uppi }\left( x \right) = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 1 \\ \end{array} } & {\begin{array}{*{20}c} 2 & 3 \\ \end{array} } \\ {\begin{array}{*{20}c} 2 & 0 \\ \end{array} } & {\begin{array}{*{20}c} 1 & 3 \\ \end{array} } \\ \end{array} } \right)\). Our algorithm can be further applied to Nagata et al.’s problem. Our algorithm will output \(g\left( {A_{1} } \right)\) and \(g\left( {A_{0} } \right)\) if the function \(f\left( x \right) = \left( {g\left( {A_{1} } \right)g\left( {A_{0} } \right)} \right)_{2} \cdot {\uppi }\left( x \right)\), where \(A_{1}\), \(A_{0} \in \left\{ {0,1} \right\}^{m}\), \(x \in \left\{ {0,1} \right\}^{2}\) and \(g: \left\{ {0, 1} \right\}^{m} \to \left\{ {0, 1} \right\}.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. of Stat. Phys. 22(5), 563–591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Benioff, P.: Quantum mechanical Hamiltonian models of Turing machines. J. of Stat. Phys. 29(3), 515–546 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. Deautch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London Ser. A 400, 97–117 (1985)

    ADS  MathSciNet  Google Scholar 

  4. Deautch, D., Jozsa, R.: Rapid solutions of problems by quantum computation. Proc. Roy. Soc. London Ser. A 439, 553–558 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  Google Scholar 

  6. Atıcı, A., Servedio, R.A.: Quantum algorithms for learning and testing juntas. Quantum Inf. Process. 6(5), 323–348 (2007)

    Article  MathSciNet  Google Scholar 

  7. Floess, D. F., Andersson, E. and Hillery, M.: Quantum algorithms for testing Boolean functions. https://arxiv.org/abs/1006.1423 (2010)

  8. Chen, C.-Y.: An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables. Quantum Inf. Process. 19(7), 213 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Li, H., Yang, L.: A quantum algorithm for approximating the influences of Boolean functions. Quantum Inf. Process. 14(6), 1787–1797 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Xie, Z., Qiu, D.: Quantum algorithms on walsh transform and hamming distance for Boolean functions. Quantum Inf. Process. 17(6), 139 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Younes, A.: A fast quantum algorithm for the affine Boolean function identification. The Eur. Phys. J. Plus. 130(2), 34 (2015)

    Article  Google Scholar 

  12. Nagata, K., Resconi, G., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: A generalization of the Bernstein-Vazirani algorithm. MOJ Eco Environ Sci. 2(1), 00010–00012 (2017)

    Google Scholar 

  13. Nagata, K., Nakamura, T., Geurdes, H., Batle, J., Abdalla, S., Farouk, A.: New method of calculating a multiplication by using the generalized Bernstein-Vazirani algorithm. Int. J. Theor. Phys. 57(6), 1605–1611 (2018)

    Article  MathSciNet  Google Scholar 

  14. Nagata, K., Nakamura, T., Geurdes, H., Batle, J., Farouk, A., Patro, S.K.: Efficient quantum algorithms of finding the roots of a polynomial function. Int. J. Theor. Phys. 57(8), 2546–2555 (2018)

    Article  MathSciNet  Google Scholar 

  15. Nagata, K., Patro, S.K., Dlep, D.N.: Various new forms of the Bernstein-Vazirani algorithm beyond qubit systems. Asian J. Math. Phys. 3(1), 1–12 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Cheng Hsueh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 The simulation of our example in Julia language and the simulation.

Appendix 1 The simulation of our example in Julia language and the simulation.

figure a

The simulation of our example have been implemented in Julia language. The process of executing Algorithm 1 for finding \(a\) if the function \(f\left(x\right)=a\cdot {\uppi }_{41}\left(x\right)\), where \(a=3\). The steps show that Algorithm 1 can output \(a=3\).

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CY., Chang, CY. & Hsueh, CC. Solving Bernstein and Vazirani’s Problem with the 2-bit Permutation Function. Quantum Inf Process 21, 15 (2022). https://doi.org/10.1007/s11128-021-03345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03345-0

Keywords

Navigation