Skip to main content
Log in

Quantum algorithm for Laplacian eigenmap via Rayleigh quotient iteration

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Laplacian eigenmap (LE) is a geometrically motivated algorithm for dimensionality reduction. However, as the data dimensionality increasing, it is intractable for classical computers to solve the generalized eigen-problem which is a crucial subroutine of the LE. In this work, we propose a quantum algorithm for Laplacian eigenmap (QLE). Compared with classical LE, our QLE can provide an exponential speedup in eigenmapping step over classical counterparts under some mild condition. In our scheme, we first present a quantum subroutine for adjacency graph construction based on the controlled SWAP test and maximum searching algorithm. Second, a variational quantum generalized eigensolver (VQGE) is proposed to solve the generalized eigen-problem \( A\varvec{x} = \lambda B \varvec{x}\). The proposed VQGE avoids the determination of the partial derivatives of the Rayleigh quotient and the difficulty of selecting hyperparameter. Finally, as a proof-of-principle, we conduct a numerical simulation to solve the variational quantum Laplacian eigenmap of randomly generated data points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoffmann, H., Schaal, S., Vijayakumar, S.: Local dimensionality reduction for non-parametric regression. Neural Process. Lett. 29(2), 109 (2009). https://doi.org/10.1007/s11063-009-9098-0

    Article  Google Scholar 

  2. Vlachos, M., Domeniconi, C., Gunopulos, D., Kollios, G., Koudas, N.: In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Association for Computing Machinery), p. 645–651. https://doi.org/10.1145/775047.775143

  3. Chizi, B., Maimon, O.: Dimension Reduction and Feature Selection, pp. 83–100. Springer, Berlin (2009)

    Google Scholar 

  4. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433 (2010)

    Article  Google Scholar 

  5. Izenman, A.J.: Linear Discriminant Analysis, pp. 237–280. Springer, Berlin (2013)

    Google Scholar 

  6. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323 (2000)

  7. Cai, D., He, X., Han, J., Zhang, H.J.: Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Process. 15(11), 3608 (2006)

    Article  ADS  Google Scholar 

  8. Balasubramanian, M., Schwartz, E.L., Tenenbaum, J.B., de Silva, V., Langford, J.C.: The Isomap algorithm and topological stability. Science 295(5552), 7 (2002)

    Article  Google Scholar 

  9. He, X., Cai, D., Yan, S., Zhang, H.J.: In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, vol.2 (IEEE), vol.2, pp. 1208–1213

  10. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373 (2003). https://doi.org/10.1162/089976603321780317

    Article  MATH  Google Scholar 

  11. Tu, S.T., Chen, J.Y., Yang, W., Sun, H.: Laplacian eigenmaps-based polarimetric dimensionality reduction for SAR image classification. IEEE Trans. Geosci. Remote Sens. 50(1), 170 (2011)

    Article  ADS  Google Scholar 

  12. Shor, P.W.: (SIAM, 1999), vol. 41, pp. 303–332

  13. Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79(23), 4709 (1997)

    Article  ADS  Google Scholar 

  14. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  15. Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019)

    Article  Google Scholar 

  16. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7) (1982)

  17. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631 (2014)

    Article  Google Scholar 

  18. Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18(7), 073011 (2016)

    Article  ADS  Google Scholar 

  19. Duan, B., Yuan, J., Xu, J., Li, D.: Quantum algorithm and quantum circuit for A-optimal projection: dimensionality reduction. Phys. Rev. A 99(3), 032311 (2019)

    Article  ADS  Google Scholar 

  20. Temme, K., Bravyi, S., Gambetta, J.M.: Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119(18), 180509 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  21. Strikis, A., Qin, D., Chen, Y., Benjamin, S.C., Li, Y.: Learning-based quantum error mitigation. arXiv preprint arXiv:2005.07601 (2020)

  22. Guerreschi, G.G., Matsuura, A.Y.: QAOA for max-cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 9(1), 1 (2019)

    Article  Google Scholar 

  23. Bravo-Prieto, C., LaRose, R., Cerezo, M., Subasi, Y., Cincio, L., Coles, P.: Variational quantum linear solver: A hybrid algorithm for linear systems. Bull. Am. Phys. Soc. 65 (2020)

  24. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum Eigensolver for small molecules and quantum magnets. Nature 549(7671), 242 (2017)

    Article  ADS  Google Scholar 

  25. Wang, D., Higgott, O., Brierley, S.: Accelerated variational quantum Eigensolver. Phys. Rev. Lett. 122(14), 140504 (2019)

    Article  ADS  Google Scholar 

  26. Liang, J.M., Shen, S.Q., Li, M., Li, L.: Variational quantum algorithms for dimensionality reduction and classification. Phys. Rev. A 101(3), 032323 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  27. Chen, Y., Wei, S., Gao, X., Wang, C., Tang, Y., Wu, J., Guo, H.: A low failure rate quantum algorithm for searching maximum or minimum. Quantum Inf. Process. 19(8), 1 (2020)

    MathSciNet  Google Scholar 

  28. Huang, Y., Li, X.: Quantum Laplacian eigenmap. arXiv preprint arXiv:1611.00760 (2016)

  29. Thabet, S., Hullo, J.F.: Laplacian Eigenmaps with variational circuits: a quantum embedding of graph data. arXiv preprint arXiv:2011.05128 (2020)

  30. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53 (2002)

    Article  MathSciNet  Google Scholar 

  31. Li, M., Yuan, B.: 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recogn. Lett. 26(5), 527 (2005)

    Article  ADS  Google Scholar 

  32. Scott, D.S.: Solving sparse symmetric generalized eigenvalue problems without factorization. SIAM J. Numer. Anal. 18(1), 102 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  33. Wang, X., Song, Z., Wang, Y.: Variational quantum singular value decomposition. arXiv preprint arXiv:2006.02336 (2020)

  34. Knill, E., Ortiz, G., Somma, R.D.: Optimal quantum measurements of expectation values of observables. Phys. Rev. A 75(1), 012328 (2007)

    Article  ADS  Google Scholar 

  35. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3), 032309 (2018)

  36. Sameh, A.H., Wisniewski, J.A.: A trace minimization algorithm for the generalized eigenvalue problem. SIAM J. Numer. Anal. 19(6), 1243 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  37. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 1 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61871111), the Social Development Projects of Jiangsu Science and Technology Department (No. BE2018704) and the Fundamental Research Funds for the Central Universities (No. 2242021k30053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Tao Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ze-Tong Li and Fan-Xu Meng have contributed equally to this work.

Hardware efficient ansatz

Hardware efficient ansatz

The hardware efficient ansatz is a kind of structured circuit consist of hardware implementable parameterized elementary gates. Based on the IBM QX’s elementary gate set, we use the ansatz as shown in Figs. 5 and 6.

Fig. 5
figure 5

The unit of hardware efficient ansatz

Fig. 6
figure 6

The hardware efficient ansatz with l layers

In Fig. 5, the gates \(R_y(\theta )\), \(R_x(\theta )\) are Pauli rotation gates whose mathematical representation are

$$\begin{aligned} R_y(\theta ) = e^{-i\frac{\theta }{2}Y},\,\, R_z(\theta ) = e^{-i\frac{\theta }{2}Z}. \end{aligned}$$
(40)

It is clear that the unit can be written by

$$\begin{aligned} (U^i_3\otimes U^i_4)CNOT(U^i_1\otimes U^i_2), \end{aligned}$$
(41)

where \(R_z(\theta ^i_{3j - 2})R_y(\theta ^i_{3j - 1})R_z(\theta ^i_{3j})\) is the Euler decomposition of \(U^i_j\).

There are 12 parameters per unit, and \(12\left\lfloor \frac{n}{2}\right\rfloor \) parameters per layer, where n is the number of qubits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZT., Meng, FX., Yu, XT. et al. Quantum algorithm for Laplacian eigenmap via Rayleigh quotient iteration. Quantum Inf Process 21, 11 (2022). https://doi.org/10.1007/s11128-021-03347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03347-y

Keywords

Navigation