Skip to main content
Log in

Controllable photon blockade in double-cavity optomechanical system with Kerr-type nonlinearity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Photon blockade (PB) is an effective way to generate single photon source which is indispensable in single-photon-based quantum information processing. Here we investigate the statistical properties of photons in a double-cavity optomechanical system, in which an optomechanical cavity (the primary one) is coupled to a Kerr-nonlinearity cavity (the secondary one). The optimal parametric relations for a strong PB effect are derived by calculating the equal-time second-order correlation functions. The results show that a weak Kerr-nonlinearity leads to a perfect PB effect in the primary cavity and a strong Kerr-nonlinearity leads to a stronger PB effect in the secondary cavity and between the two cavities. By adjusting the tunneling coupling strength to satisfy the optimal parametric conditions, the antibunching effects in and between these two cavities are controllable by properly selecting the Kerr-nonlinearity strength. This system can be used for a single-photon source with a controllable fashion in quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, D.Y., Bai, C.H., Liu, S.T., Zhang, S., Wang, H.F.: Optomechanical cooling beyond the quantum backaction limit with frequency modulation. Phys. Rev. A 98, 023816 (2018)

    Article  ADS  Google Scholar 

  2. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014)

    Article  ADS  Google Scholar 

  3. Poot, M., van der Zant, H.S.J.: Mechanical systems in the quantum regime. Phys. Rep. 511, 273–335 (2012)

    Article  ADS  Google Scholar 

  4. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    Article  ADS  Google Scholar 

  5. Zhang, W.M., Hu, K.M., Peng, Z.K., Meng, G.: Tunable micro and nanomechanical resonators. Sensors 15, 26478–26566 (2015)

    Article  ADS  Google Scholar 

  6. Singh, V., Bosman, S.J., Schneider, B.H., Blanter, Y.M., Castellanos-Gomez, A., Steele, G.A.: Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol. 9, 820–824 (2014)

    Article  ADS  Google Scholar 

  7. Wilson-Rae, I., Nooshi, N., Dobrindt, J., Kippenberg, T.J., Zwerger, W.: Cavity-assisted backaction cooling of mechanical resonators. New J. Phys. 10, 095007 (2008)

    Article  ADS  Google Scholar 

  8. Kang, Y.H., Chen, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Nonadiabatic holonomic quantum computation using Rydberg blockade. Phys. Rev. A 97, 042336 (2018)

    Article  ADS  Google Scholar 

  9. Bai, C.H., Wang, D.Y., Zhang, S., Wang, H.F.: Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system. Sci. China-Phys. Mech. Astron. 62, 970311 (2019)

    Article  ADS  Google Scholar 

  10. Zhong, Z.R., Wang, X., Qin, W.: Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Front. Phys. 13, 130319 (2018)

    Article  Google Scholar 

  11. Meiser, D., Meystre, P.: Coupled dynamics of atoms and radiation-pressure-driven interferometers. Phys. Rev. A 73, 033417 (2006)

    Article  ADS  Google Scholar 

  12. Miskeen Khan, M., Javed Akram, M., Paternostro, M., Saif, F.: Engineering single-phonon number states of a mechanical oscillator via photon subtraction. Phys. Rev. A 94, 063830 (2016)

    Article  ADS  Google Scholar 

  13. Gao, D.L., Ding, W.Q., Vesperinas, M.N., Ding, X.M., Rahman, M., Zhang, T.H., Lim, C.T., Qiu, C.W.: Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6, e17039 (2017)

    Article  Google Scholar 

  14. Chen, Y.H., Chen, Q.Q., Xia, Y., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)

    Article  ADS  Google Scholar 

  15. Doria, M.M., Nori, F., Satija, I.I.: Thue-Morse quantum Ising model. Phys. Rev. B 39, 6802 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  16. Stannigel, K., Komar, P., Habraken, S.J.M., Bennett, S.D., Lukin, M.D., Zoller, P., Rabl, P.: Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012)

    Article  ADS  Google Scholar 

  17. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)

    Article  ADS  Google Scholar 

  18. Purdy, T.P., Peterson, R.W., Regal, C.A.: Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801–804 (2013)

    Article  ADS  Google Scholar 

  19. Fiore, V., Yang, Y., Kuzyk, M.C., Barbour, R., Tian, L., Wang, H.: Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107, 133601 (2011)

    Article  ADS  Google Scholar 

  20. Dobrindt, J.M., Wilson-Rae, I., Kippenberg, T.J.: Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    Article  ADS  Google Scholar 

  21. Majumdar, A., Bajcsy, M., Rundquist, A., Vu\(\check{c}\)kovi\(\acute{c}\), J.: Loss-enabled sub-poissonian light generation in a bimodal nanocavity. Phys. Rev. Lett. 108, 183601 (2012)

  22. Zhang, W., Yu, Z.Y., Liu, Y.M., Peng, Y.W.: Optimal photon antibunching in a quantum-dot-bimodal-cavity system. Phys. Rev. A 89, 043832 (2014)

    Article  ADS  Google Scholar 

  23. Xu, X.W., Li, Y.J.: Antibunching photons in a cavity coupled to an optomechanical system. J. Opt. B At. Mol. Opt. Phys. 46, 035502 (2013)

    Article  ADS  Google Scholar 

  24. Savona, V.: Unconventional photon blockade in coupled optomechanical systems. arXiv:1302.5937v2 [quant-ph]

  25. Kyriienko, O., Shelykh, I.A., Liew, T.C.H.: Tunable single photon emission from dipolaritons (2014). arXiv:1403.7441v1

  26. Ferretti, S., Savona, V., Gerace, D.: Optimal antibunching in passive photonic devices based on coupled nonlinear resonators. New J. Phys. 15, 025012 (2013)

    Article  ADS  Google Scholar 

  27. Flayac, H., Savona, V.: Input-output theory of the unconventional photon blockade. Phys. Rev. A 88, 033836 (2013)

    Article  ADS  Google Scholar 

  28. Gerace, D., Savona, V.: Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity. Phys. Rev. A 89, 031803(R) (2014)

    Article  ADS  Google Scholar 

  29. Ferretti, S., Andreani, L.C., Türeci, H.E., Gerace, D.: Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation. Phys. Rev. A 82, 013841 (2010)

    Article  ADS  Google Scholar 

  30. Liao, J.Q., Law, C.K.: Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, 053836 (2010)

    Article  ADS  Google Scholar 

  31. Miranowicz, A., Paprzycka, M., Liu, Y.X., Bajer, J., Nori, F.: Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A 87, 023809 (2013)

    Article  ADS  Google Scholar 

  32. Sarma, B., Sarma, A.K.: Quantum-interference-assisted photon blockade in a cavity via parametric interactions. Phys. Rev. A 96, 053827 (2017)

    Article  ADS  Google Scholar 

  33. Flayac, H., Savona, V.: Unconventional photon blockade. Phys. Rev. A 96, 053810 (2017)

    Article  ADS  Google Scholar 

  34. Shen, H.Z., Zhou, Y.H., Yi, X.X.: Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A 91, 063808 (2015)

    Article  ADS  Google Scholar 

  35. Lemonde, M.A., Didier, N., Clerk, A.A.: Antibunching and unconventional photon blockade with Gaussian squeezed states. Phys. Rev. A 90, 063824 (2014)

    Article  ADS  Google Scholar 

  36. Xie, H., Liao, C.G., Shang, X., Chen, Z.H., Lin, X.M.: Optically induced phonon blockade in an optomechanical system with second-order nonlinearity. Phys. Rev. A 98, 023819 (2018)

    Article  ADS  Google Scholar 

  37. Zou, F., Lai, D.-G., Liao, J.-Q.: Enhancement of photon blockade effect via quantum interference. Opt. Express 28, 16175–16190 (2020)

    Article  ADS  Google Scholar 

  38. L\(\ddot{u}\), X.-Y., Zhang, W.-M., Ashhab, S., Wu, Y., Nori, F.: Quantum-criticality induced strong Kerr nonlinearities in optomechanical systems. Sci. Rep. 3, 2943 (2013)

  39. Ludwig, M., Safavi-Naeini, A.H., Painter, O., Marquardt, F.: Enhanced quantum nonlinearities in a two-mode optomechanical system. Phys. Rev. Lett. 109, 063601 (2012)

    Article  ADS  Google Scholar 

  40. Wang, X., Miranowicz, A., Li, H.-R., Nori, F.: Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit. Phys. Rev. A 93, 063861 (2016)

    Article  ADS  Google Scholar 

  41. Wang, D.Y., Bai, C.H., Liu, S.T., Zhang, S., Wang, H.F.: Distinguishing photon blockade in a PT-symmetric optomechanical system. Phys. Rev. A 99, 043818 (2019)

    Article  ADS  Google Scholar 

  42. Yamamoto, T., Watanabe, M., You, J.Q., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Nori, F., Tsai, J.S.: Spectroscopy of superconducting charge qubits coupled by a Josephson inductance. Phys. Rev. B 77, 064505 (2008)

    Article  ADS  Google Scholar 

  43. Woolley, M.J., Doherty, A.C., Milburn, G.J., Schwab, K.C.: Nanomechanical squeezing with detection via a microwave cavity. Phys. Rev. A 78, 062303 (2008)

    Article  ADS  Google Scholar 

  44. Vitali, D., Tombesi, P., Woolley, M.J., Doherty, A.C., Milburn, G.J.: Entangling a nanomechanical resonator and a superconducting microwave cavity. Phys. Rev. A 76, 042336 (2007)

    Article  ADS  Google Scholar 

  45. Kirchmair, G., Vlastakis, B., Leghtas, Z., Nigg, S.E., Paik, H., Ginossar, E., Mirrahimi, M., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205–209 (2013)

    Article  ADS  Google Scholar 

  46. Xie, H., Lin, G.W., Chen, X., Chen, Z.H., Lin, X.M.: Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Phys. Rev. A 93, 063860 (2016)

    Article  ADS  Google Scholar 

  47. Liao, J.-Q., Nori, F.: Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013)

    Article  ADS  Google Scholar 

  48. Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11564041 and 61822114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Dong Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, ZH., Wang, HF. & Zhu, AD. Controllable photon blockade in double-cavity optomechanical system with Kerr-type nonlinearity. Quantum Inf Process 21, 22 (2022). https://doi.org/10.1007/s11128-021-03360-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03360-1

Keywords

Navigation