Skip to main content
Log in

Entanglement dynamics of a nano-mechanical resonator coupled to a central qubit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We introduce a unitary operator which may be constructed conveniently by exploiting the properties of the Glauber displacement and parity operators. We show that it can be considered as a constant of motion of a quantum system including pure dephasing interaction of a central qubit with a nano-mechanical resonator. Using the eigenvectors of the Glauber displacement operator, we paves a way for an extensive study of the dynamics of resonator-qubit states. In addition, we show that the establishment of such a constant of motion, which includes the parity operator, provides a way to introduce a capable mechanical framework to generate some desired mechanical state as superposition of the Glauber coherent states. We investigate nonclassical properties of the generated mechanical states, by evaluating mechanical-squeezing, Wigner function, position–momentum entropic squeezing, and entanglement between spin-mechanical modes. Furthermore, the pairwise classical and quantum correlations are derived based on a necessary and sufficient condition for the zero-discord state. Finally, in order to study the mechanical state’s behavior in an environment, we consider that the output state is subject to amplitude (phase)-damping channels and their dissipative properties are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. It should be noted that in order to avoid long mathematical calculations, only the calculations related to the evolved state vector and the corresponding density matrix of the system by considering the state \(|\Psi \rangle _{\lambda _{1}}\) as an initial state will be obtained in more detail. For the next three cases, we will suffice to mention the results of the calculations by presenting the form of the concurrence measure.

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31(4), 555 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Schrödinger, E.: Probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 32(3), 446 (1936)

    Article  ADS  MATH  Google Scholar 

  4. Horne, M.A., Shimony, A., Zeilinger, A.: Two-particle interferometry. Phys. Rev. Lett. 62, 2209 (1989)

    Article  ADS  Google Scholar 

  5. Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45, 6811 (1992)

    Article  ADS  Google Scholar 

  6. Wang, X., Sanders, B.C.: Multipartite entangled coherent states. Phys. Rev. A 65, 012303 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. Fakhri, H., Dehghani, A.: Coherency of \(su(1,1)\)-Barut–Girardello type and entanglement for spherical harmonics. J. Math. Phys. 50, 052104 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Afshar, D., Anbaraki, A.: Nonclassical properties and entanglement of superposition of two-mode separable nonlinear coherent states. J. Opt. Soc. Am. B 33, 558 (2016)

    Article  ADS  Google Scholar 

  9. Karimi, A.: Two-mode photon-added entangled coherent-squeezed states: their entanglement and nonclassical properties. Appl. Phys. B 123, 181 (2017)

    Article  ADS  Google Scholar 

  10. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)

    Article  ADS  Google Scholar 

  11. Pan, J.-W., Chen, Z.-B., Lu, C.-Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  12. Karimi, E., Leach, J., Slussarenko, S., Piccirillo, B., Marrucci, L., Chen, L., She, W., Franke-Arnold, S., Padgett, M.J., Santamato, E.: Spin–orbit hybrid entanglement of photons and quantum contextuality. Phys. Rev. A 82, 022115 (2010)

    Article  ADS  Google Scholar 

  13. Leach, J., Jack, B., Romero, J., Jha, A.K., Yao, A.M., Franke-Arnold, S., Ireland, D.G., Boyd, R.W., Barnett, S.M., Padgett, M.J.: Quantum correlations in optical angle-orbital angular momentum variables. Science 329, 662 (2010)

    Article  ADS  Google Scholar 

  14. Bhatti, D., Zanthier, J., Agarwal, G.S.: Entanglement of polarization and orbital angular momentum. Phys. Rev. A 91, 062303 (2015)

    Article  ADS  Google Scholar 

  15. Hach, E.E., Birrittellla, E.E., Alsing, P.M., Gerry, C.C.: SU(1,1) parity and strong violations of a Bell inequality by entangled Barut–Girardello coherent states. JOSAB 35, 2433 (2018)

    Article  ADS  Google Scholar 

  16. Lahaye, M.D., Buu, O., Camarota, B., Schwab, K.C.: Approaching the quantum limit of a nanomechanical resonator. Science 304, 74 (2004)

    Article  ADS  Google Scholar 

  17. Bradaschia, C., et al.: The VIRGO project: a wide band antenna for gravitational wave detection. Phys. Res. A 289, 518 (1990)

    Google Scholar 

  18. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  19. Walter, S., Marquardt, F.: Dynamical gauge fields in optomechanics. New J. Phys. 18, 113029 (2016)

    Article  ADS  Google Scholar 

  20. Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  21. O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, Radoslaw C., Erik Lucero, L., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J.M., Cleland, A.N.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010)

  22. Chauhan, A.K., Biswas, A.: Atom-assisted quadrature squeezing of a mechanical oscillator inside a dispersive cavity. Phys. Rev. A 94, 023831 (2016)

    Article  ADS  Google Scholar 

  23. Lu, X.-Y., Liao, J.-Q., Tian, L., Nori, F.: Steady-state mechanical squeezing in an optomechanical system via duffing nonlinearity. Phys. Rev. A 91, 013834 (2015)

    Article  ADS  Google Scholar 

  24. Liao, J.-Q., Law, C.K.: Parametric generation of quadrature squeezing of mirrors in cavity optomechanics. Phys. Rev. A 83, 033820 (2011)

    Article  ADS  Google Scholar 

  25. Kerdoncuff, H., Hoff, U.B., Harris, G.I., Bowen, W.P., Andersen, U.L.: Squeezing–enhanced measurement sensitivity in a cavity optomechanical system. Ann. Phys. 527, 107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ying, L., Lai, Y.C., Grebogi, C.: Quantum manifestation of a synchronization transition in optomechanical systems. Phys. Rev. A 90, 053810 (2014)

    Article  ADS  Google Scholar 

  27. Teufel, J.D., Donner, T., Dale, L., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359 (2011)

    Article  ADS  Google Scholar 

  28. Chan, J., Alegre, T.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Groblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011)

    Article  ADS  Google Scholar 

  29. Verhagen, E., Deleglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63 (2012)

    Article  ADS  Google Scholar 

  30. Arcizet, O., Jacques, V., Siria, A., Poncharal, P., Vincent, P., Seidelin, S.: A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nat. Phys. 7, 879 (2011)

    Article  Google Scholar 

  31. Kolkowitz, S., Bleszynski Jayich, A.C., Unterreithmeier, Q.P., Bennett, S.D., Rabl, P., Harris, J.G.E., Lukin, M.D.: Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603 (2012)

    Article  ADS  Google Scholar 

  32. LaHaye, M.D., Suh, J., Echternach, P.M., Schwab, K.C., Roukes, M.L.: Nanomechanical measurements of a superconducting qubit. Nature 459, 960 (2009)

    Article  ADS  Google Scholar 

  33. Pirkkalainen, J.-M., Cho, S.U., Jian, L., Paraoanu, G.S., Hakonen, P.J., Sillanpää, M.A.: Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494, 211 (2013)

    Article  ADS  Google Scholar 

  34. Asadian, A., Brukner, C., Rabl, P.: Probing macroscopic realism via Ramsey correlation measurements. Phys. Rev. Lett. 112, 190402 (2014)

    Article  ADS  Google Scholar 

  35. Dehghani, A., Mojaveri, B., Vaez, M.: Spin-bath dynamics in a quantum resonator-qubit system: effect of a mechanical resonator coupled to a central qubit. Int. J. Theor. Phys. 59, 3107 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Flühmann, C., Negnevitsky, V., Marinelli, M., Home, J.P.: Sequential modular position and momentum measurements of a trapped ion mechanical oscillator. Phys. Rev. X 8, 021001 (2018)

    Google Scholar 

  37. Wen-Ju, G., Yi, Z., Sun, L.-H., Yan, Y.: Generation of mechanical squeezing and entanglement via mechanical modulations. Opt. Exp. 26, 30773 (2018)

    Article  Google Scholar 

  38. Wang, D.-Y., Bai, C.-H., Wang, H.-F., Zhu, A.-D., Zhang, S.: Steady-state mechanical squeezing in a double-cavity optomechanical system. Sci. Rep. 6, 38559 (2016)

    Article  ADS  Google Scholar 

  39. Huang, S., Chen, A.: Mechanical squeezing in a dissipative optomechanical system with two driving tones. Phys. Rev. A 103, 023501 (2021)

    Article  ADS  Google Scholar 

  40. Hudson, R.L.: When is the Wigner quasi-probability density non-negative? Rep. Math. Phys. 6, 249 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Kenfack, A., Zyczkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B Quant. Semiclass. Opt. 6, 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  42. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  43. Dynkin, E.B.: Calculation of the coefficients in the Campbell–Hausdorff formula. Doklady Akademii Nauk SSSR 57, 323 (1947). (in Russian)

    MathSciNet  Google Scholar 

  44. Casas, F., Murua, A., Nadinic, M.: Efficient computation of the Zassenhaus formula. Comput. Phys. Commun. 183, 2386 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  47. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  48. Zhou, T., Cui, J., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)

    Article  ADS  Google Scholar 

  49. Orlowski, A.: Information entropy and squeezing of quantum fluctuations. Phys. Rev. A 56, 2545 (1997)

    Article  ADS  Google Scholar 

  50. Beckner, W.: Inequalities in Fourier analysis. Ann. Math. 102, 159 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  51. Bialynicki-Birula, I., Mycielski, J.: Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dehghani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of time evolution operator (2)

Appendix: Derivation of time evolution operator (2)

The time evolution operator associated with the Hamiltonian (1) is given by

$$\begin{aligned}&U(\tau )=e^{-i\tau H}=e^{-i\tau \left( \omega _{0} \sigma _{z}+\omega a^{\dag }a+i\frac{\omega }{2}(a-a^{\dag })\sigma _{z}\right) }. \end{aligned}$$

Defining the operators \(A:=-i\omega \tau a^{\dag }a\) and \(B=\frac{\omega }{2} \tau (a-a^{\dag })\sigma _{z}\), using the Zassenhaus formula [44], i.e.

$$\begin{aligned}&e^{A+B}=e^{A}e^{B}e^{-\frac{[A,B]}{2}}e^{\frac{[A,[A,B]]+2[B,[A,B]]}{3!}}e^{-\frac{[A,[A,[A,B]]]+3[B,[A,[A,B]]]+3[B,[B,[A,B]]]}{4!}}\ldots , \end{aligned}$$

and applying the commutation relations:

$$\begin{aligned}&[A,B]=i\frac{(\omega \tau )^{2}}{2} \sigma _{z} (a^{\dag }+a),\nonumber \\&[A,[A,B]]=-(\omega \tau )^{2}B=-\frac{(\omega \tau )^{3}}{2}(a-a^{\dag })\sigma _{z},\nonumber \\&[B,[A,B]]=i\frac{(\omega \tau )^{3}}{2},\nonumber \\&[A,[A,[A,B]]]=-i\frac{(\omega \tau )^{4}}{2} \sigma _{z} (a^{\dag }+a),\nonumber \\&[B,[A,[A,B]]]=[B,[B,[A,B]]]=0, \end{aligned}$$

the time evolution operator U(t) can be recast into

$$\begin{aligned} U(t) =e^{-i\tau \omega _{0} \sigma _{z}}e^{-i\omega \tau a^{\dag }a}e^{\frac{\omega \tau }{2}(a-a^{\dag })\sigma _{z}}e^{-i\frac{(\omega \tau )^{2}}{2*2!} \sigma _{z} (a^{\dag }+a)}e^{i\frac{(\omega \tau )^{3}}{3!}}e^{-\frac{(\omega \tau )^{3}}{2*3!}(a-a^{\dag })\sigma _{z}}e^{i\frac{(\omega \tau )^{4}}{2*4!} \sigma _{z} (a^{\dag }+a)}\ldots . \end{aligned}$$

Now, using the Baker–Campbell–Hausdorff (BCH) formula [43], i.e.

$$\begin{aligned}&e^{A}e^{B}=e^{A+B+\frac{[A,B]}{2}+\frac{[A,[A,B]]-[B,[A,B]]}{12}+\frac{[A,[A,[A,B]]]+3[B,[A,[A,B]]]+3[B,[B,[A,B]]]}{24}+\cdots }, \end{aligned}$$

one can show that:

$$\begin{aligned}&e^{\frac{\omega \tau }{2}(a-a^{\dag })\sigma _{z}}e^{-i\frac{(\omega \tau )^{2}}{2*2!} \sigma _{z} (a^{\dag }+a)}=e^{-i\frac{(\omega \tau )^{3}}{2*2!}}e^{-\frac{\omega \tau }{2}\sigma _{z}\left[ \left( 1+i\frac{\omega \tau }{2!}\right) a^{\dag }-\left( 1-i\frac{\omega \tau }{2!}\right) a\right] }\\&\quad =e^{-i\frac{(\omega \tau )^{3}}{2*2!}}e^{\frac{i\sigma _{z}}{2}\left[ \left( (i\omega \tau )+\frac{(i\omega \tau )^2}{2!}\right) a^{\dag }+\left( (-i\omega \tau )+\frac{(-i\omega \tau )^2}{2!}\right) a\right] },\\&e^{\frac{\omega \tau }{2}(a-a^{\dag })\sigma _{z}}e^{-i\frac{(\omega \tau )^{2}}{2*2!} \sigma _{z} (a^{\dag }+a)}e^{-\frac{(\omega \tau )^{3}}{2*3!}(a-a^{\dag })\sigma _{z}}\\&\quad =e^{-i\frac{(\omega \tau )^{3}}{4}\left( 1+\frac{(\omega \tau )^{2}}{3!}\right) }e^{-\frac{\omega \tau }{2}\sigma _{z}\left[ \left( 1+i\frac{\omega \tau }{2!}-\frac{(\omega \tau )^2}{3!}\right) a^{\dag }-\left( 1-i\frac{\omega \tau }{2!}-\frac{(\omega \tau )^2}{3!}\right) a\right] }\\&\quad =e^{-i\frac{(\omega \tau )^{3}}{4}\left( 1+\frac{(\omega \tau )^{2}}{3!}\right) }e^{\frac{i\sigma _{z}}{2}\left[ \left( (i\omega \tau )+\frac{(i\omega \tau )^2}{2!}+\frac{(i\omega \tau )^3}{3!}\right) a^{\dag }+\left( (-i\omega \tau )+\frac{(-i\omega \tau )^2}{2!}+\frac{(-i\omega \tau )^3}{3!}\right) a\right] }. \end{aligned}$$

By exploiting the above relations, the time evolution operator U(t) gets

$$\begin{aligned} U(t)= & {} e^{-it\omega _{0} \sigma _{z}}e^{-i\omega t a^{\dag }a}e^{if(\tau )}e^{\frac{i\sigma _{z}}{2}\left[ \left( (i\omega \tau )+\frac{(i\omega \tau )^2}{2!}+\frac{(i\omega \tau )^3}{3!}+\cdots \right) a^{\dag }+\left( (-i\omega \tau )+\frac{(-i\omega \tau )^2}{2!}+\frac{(-i\omega \tau )^3}{3!}+\cdots \right) a\right] }\nonumber \\= & {} e^{-it\omega _{0} \sigma _{z}}e^{-i\omega t a^{\dag }a}e^{if(\tau )}e^{\frac{i\sigma _{z}}{2}\left[ \left( e^{i\omega \tau }-1\right) a^{\dag }+\left( e^{-i\omega \tau }-1\right) a\right] }\nonumber \\= & {} e^{if(\tau )}e^{-it\omega _{0} \sigma _{z}}e^{\frac{-i\sigma _{z}}{2}\left[ \left( e^{-i\omega \tau }-1\right) a^{\dag }+\left( e^{i\omega \tau }-1\right) a\right] }e^{-i\omega t a^{\dag }a}\nonumber \\= & {} e^{if(\tau )}e^{-it\omega _{0} \sigma _{z}}e^{\frac{-i\sigma _{z}}{2}(\eta a^{\dag }+{\overline{\eta }} a)}e^{-i\omega t a^{\dag }a}, \end{aligned}$$

where we set \(\eta =e^{-i\omega \tau }-1\) and \(f(t)=-\frac{(i\omega \tau )^2}{2*2!}-\frac{(\omega \tau )^3}{2*3!}-i\frac{(\omega \tau )^{3}}{4}\left( 1+\frac{(\omega \tau )^{2}}{3!}\right) +\cdots \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, A., Mojaveri, B. & Aryaie, M. Entanglement dynamics of a nano-mechanical resonator coupled to a central qubit. Quantum Inf Process 21, 45 (2022). https://doi.org/10.1007/s11128-021-03372-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03372-x

Keywords

Navigation