Skip to main content
Log in

Cyclic preparation of two-qubit state in two noisy environments

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a cyclic preparation scheme is proposed. In our scheme, Alice, Bob and Charlie can cyclic prepare two-qubit state with the control of David. Firstly, the quantum channel can be constructed by using H, Z and CNOT operations. And we give the circuit diagram of the construction of the quantum channel and the processing of the scheme. Secondly, the participants perform a single-qubit measurement and three two-qubit measurements through appropriate measurement bases. Moreover, the prepared state can be recovered deterministically and all recovery operations are given. Thirdly, we consider our scheme in two noisy environments (amplitude-damping and phase-damping noisy environment). The fidelities of output states are calculated and the effect factors are discussed. Finally, we give some discussions with other schemes. Our scheme has better communication efficiency because it improves the number of quantum state particles transmitted without increasing the classical communication consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  3. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A. 6301(1), 4302–4430 (2001)

    Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., et al.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902(1–4) (2001)

    Article  ADS  Google Scholar 

  5. Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process 13(7), 1639–1650 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chen, X.B., Ma, S.Y., Su, Y., et al.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process 11(6), 1653–1667 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Zhou, K.H., Shi, L., Luo, B.B., et al.: Deterministic controlled remote state preparation of real-parameter multi-qubit states via maximal slice states. Int. J. Theor. Phys. 58, 12 (2019)

    Article  MATH  Google Scholar 

  8. Cao, T.B., Nguyen, B.A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(1), 015003 (2013)

    Article  Google Scholar 

  9. Sun, Y.-R., Chen, Y.L., Ahmad, H., et al.: An asymmetric controlled bidirectional quantum state transmission protocol. Comput. Mater. Contin. (CMC) 59(1), 215–227 (2019)

    Google Scholar 

  10. Sharma, V., Shukla, C., Banerjee, S., et al.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process 14(9), 3441–3464 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Sun, Y.-R., Xu, G., Chen, X.-B., et al.: Asymmetric controlled bidirectional remote preparation of single-and three-qubit equatorial state in noisy environment. IEEE Access 7, 2811–2822 (2019)

    Article  Google Scholar 

  12. Zhang, D., Zha, X.W., Duan, Y., et al.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process 15(5), 2169–2179 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chen, X.-B., Sun, Y.-R., Xu, G., et al.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process 16(10), 244 (2017)

    Article  ADS  MATH  Google Scholar 

  14. Song, Y., Ni, J.L., Wang, Z.Y., et al.: Deterministic bidirectional remote state preparation of a-and symmetric quantum states with a proper quantum channel. Int. J. Theor. Phys. 56(10), 3175–3187 (2017)

    Article  MATH  Google Scholar 

  15. Sun, Y.-R., Xiang, N., Dou, Z., et al.: A universal protocol for controlled bidirectional quantum state transmission. Quantum Inf. Process 18(9), 281 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ma, P.C., Chen, G.B., Li, X.W., et al.: Asymmetric bidirectional controlled remote preparation of an arbitrary four-qubit cluster-type state and a single-qubit state. Quantum Inf. Process 16(12), 308 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Fang, S., Jiang, M.: A novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. Int. J. Theor. Phys. 57(2), 523–532 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, Y.-R., Chen, X.-B., Xu, G., et al.: Asymmetric controlled bidirectional remote preparation of two-and three-qubit equatorial state. Sci. Rep. 9(1), 2081 (2019)

    Article  ADS  Google Scholar 

  19. Chen, Y.-X., Du, J., Liu, S.-Y., et al.: Cyclic quantum teleportation. Quantum Inf. Process 16, 8 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Cao, L.Y., Jiang, M., Chen, C.: Joint remote state preparation of an arbitrary eight-qubit cluster-type state. Pramana 94(1), 1–8 (2020)

    Article  ADS  Google Scholar 

  21. Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14(1), 373–379 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Du, Z.L., Li, X.L.: Deterministic joint remote state preparation of four-qubit cluster type with tripartite involvement. Quantum Inf. Process 19, 10 (2019)

    MathSciNet  Google Scholar 

  23. Wei, J.H., Shi, L., Zhao, S.H., et al.: Deterministic joint remote preparation of arbitrary multi-qubit states via three-qubit entangled states. Quantum Inf. Process 18, 8 (2019)

    Article  Google Scholar 

  24. Zhang, Y.Q., Jin, X.R., Zhang, S.: Probabilistic remote preparation of a two-atom entangled state. Chin. Phys. 14(9), 1732 (2005)

    Article  ADS  Google Scholar 

  25. Chen, Q.Q., Xia, Y., Song, J.: Probabilistic joint remote preparation of a two-particle high-dimensional equatorial state. Opt. Commun. 284(20), 5031–5035 (2011)

    Article  ADS  Google Scholar 

  26. Qian, Y.-J., Xue, S.B., Jiang, M.: Deterministic remote preparation of arbitrary single-qubit state via one intermediate node in noisy environment. Phys. Lett. A 384, 10 (2020)

    Article  MATH  Google Scholar 

  27. Luo, M.X., Chen, X.B., Ma, S.Y., et al.: Deterministic remote preparation of an arbitrary W-class state with multiparty. J. Phys. B At. Mol. Opt. Phys. 43(6), 065501 (2010)

    Article  ADS  Google Scholar 

  28. Shao, Z.L., Long, Y.X.: Circular controlled quantum teleportation by a genuine seven-qubit entangled state. Int. J. Theor. Phys. 58(6), 1957–1967 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, M.M., Yang, C., Mousoli, R.: Controlled cyclic remote state preparation of arbitrary qubit states. CMC Comput. Mater. Contin. 55(2), 321–329 (2018)

    Google Scholar 

  30. Zhang, C.Y., Bai, M.-Q., Zhou, S.-Q.: Cyclic joint remote state preparation in noisy environment. Quantum Inf. Process 17(6), 146 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Sang, Z.-W.: Cyclic controlled joint remote state preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 58(1), 255–260 (2019)

    Article  MATH  Google Scholar 

  32. Jiang, S.X., Zhou, R.G., Xu, R.Q., et al.: Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments. IEEE Access 7, 80530–80541 (2019)

    Article  Google Scholar 

  33. Zhou, R.G., Hou, C.Q.: Cyclic and bidirectional quantum teleportation via pseudo multi-qubit states. IEEE Access 7, 42445–42449 (2019)

    Article  Google Scholar 

  34. Shi, J., Zhang, X., Zhu, Y.: Cyclic controlled quantum teleportation using three-dimensional hyper-entangled state. Int. J. Theor. Phys. 58(9), 3036–3048 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, F., Bai, M.-Q., Zhang, Y.-C., et al.: Cyclic quantum teleportation of an unknown multi-particle high-dimension state. Mod. Phys. Lett. B. 34(5), 2050073 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  36. Zhang, C.-Y., Bai, M.-Q.: Multi-hop cyclic joint remote state preparation. Int. J. Theor. Phys. 59(4), 1277–1290 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gu, J., Hwang, T., Tsai, C.-W.: On the controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 59(1), 200–205 (2020)

    Article  MATH  Google Scholar 

  38. Sun, S.Y., Li, L.X., Zhang, H.S.: Quantum cyclic controlled teleportation of unknown states with arbitrary number of qubits by using seven-qubit entangled channel. Int. J. Theor. Phys. 59(4), 1017–1030 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiao, H., Zhang, Z., Chronopoulos, A.T.: New construction of quantum error avoiding codes via group representation of quantum stabilizer codes. Eur. Phys. J. C 77(10), 667–680 (2017)

    Article  ADS  Google Scholar 

  40. Xiao, H., Ni, J., Xie, W., et al.: Construction of quantum turbo product codes based on CSS-type quantum convolutional codes. Int. J. Quantum Inf. 15(1), 1750003(1–14) (2017)

    Article  MATH  Google Scholar 

  41. Liang, X.-T.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39(5), 37 (2003)

    ADS  MathSciNet  Google Scholar 

  42. Yuan, H., Liu, Y.M., Zhang, W., et al.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B At. Mol. Opt. Phys. 41(14), 145506 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project is supported by the Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (SKLNST-2021-1-16) and the National Natural Science Foundation of China (No. 62072404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ru Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YR., Chen, XB., Shao, J. et al. Cyclic preparation of two-qubit state in two noisy environments. Quantum Inf Process 21, 40 (2022). https://doi.org/10.1007/s11128-021-03373-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03373-w

Keywords

Navigation