Skip to main content
Log in

Instantiation of quantum point obfuscation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In cryptography, obfuscation is one of the strongest forms of encryption. Point functions have been widely discussed in classical obfuscation so that obfuscation of point functions becomes an important branch of obfuscation theory. For quantum circumstance, a series of positive results in quantum point obfuscation have been proposed and indicate that quantum point obfuscation is secure under the quantum random oracle model. Furthermore, how to realize quantum point obfuscation under the standard model becomes a key question. In this paper, we clarify the definition of instantiation of quantum point obfuscation and instantiate quantum point obfuscation by means of feasible construction of quantum hash functions. Consequently, we choose the quantum point obfuscation scheme with quantum error-correcting code and prove the security of the quantum symmetric encryption scheme. Such results will provide guidance to the application of quantum obfuscation in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Institute of Electrical and Electronics Engineers, pp. 157–179 (1984)

  2. Gottesman, D.: On the theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253(1–3), 15–20 (2005)

    Article  ADS  Google Scholar 

  4. Braunstein, S.L., Mann, A.: Measurement of the Bell operator and quantum teleportation. Phys. Rev. A 51(3), 1727–1730 (1995)

    Article  ADS  Google Scholar 

  5. Chau, H.F.: Quantum-classical complexity-security tradeoff in secure multi-party computation. Phys. Rev. A 61(3), 167–169 (2000)

    Article  Google Scholar 

  6. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Proceedings of International Conference on the Theory & Applications of Cryptographic Techniques, pp. 592–608. Springer, Berlin (2013)

  7. Haake, F.: Quantum Signatures of Chaos. Springer, Berlin (2001)

    Book  Google Scholar 

  8. Shang, T., Liu, J.W.: Secure Quantum Network Coding Theory. Springer, Berlin (2020)

    Book  Google Scholar 

  9. Alagic, G., Fefferman, B.: On quantum obfuscation. arXiv:1602.01771 (2016)

  10. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfuscation. In: Proceedings of International Conference on Advances in Cryptology-Eurocrypt, pp. 20–39. Springer, Berlin (2004)

  11. Barak, B., Goldreich, O., Impagliazzo, R., et al.: On the (im)possibility of obfuscating programs (extended abstract). J. ACM 59(2), 1–18 (2001)

    Article  MathSciNet  Google Scholar 

  12. Wee, H.: On obfuscating point functions. In: Proceedings of 37th Annual ACM Symposium on Theory of Computing, pp. 523–532 (2005)

  13. Ran, C., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Proceedings of Theory and Applications of Cryptographic Techniques, International Conference on Advances in Cryptology, pp. 489–508. Springer, Berlin (2008)

  14. Hada, S.: Secure obfuscation for encrypted signatures. In: Proceedings of International Conference on Theory and Applications of Cryptographic Techniques, pp. 92–112. Springer, Berlin (2010)

  15. Bitansky, N., Ran, C.: On strong simulation and composable point obfuscation. J. Cryptol. 27(2), 317–357 (2010)

    Article  MathSciNet  Google Scholar 

  16. Shang, T., Chen, R.Y.L., Liu, J.W.: On the obfuscatability of quantum point functions. Quantum Inf. Process. 18(2), 55 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Chen, R.Y.L., Shang, T., Liu, J.W.: IND-secure quantum symmetric encryption based on point obfuscation. Quantum Inf. Process. 18(6), 16 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Moni, N., Moti, Y.: Universal one-way hash functions and their cryptographic applications. In: Proceedings of the 21th ACM Symposium on Theory of Computing, pp. 33–43 (1989)

  19. Merkle, R.C.: One Way Hash Functions and DES, Lecture Notes in Computer Science, vol. 435, pp. 428–446. Springer, Berlin (1990)

    Google Scholar 

  20. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)

    Article  MathSciNet  Google Scholar 

  21. Eaton, E.: Signature Schemes in the Quantum Random-Oracle Model. University of Waterloo, Waterloo (2017)

    Google Scholar 

  22. Ablayev, F., Vasiliev, A.: Cryptographic quantum hashing. Laser Phys. Lett. 11(2), 25202 (2014)

    Article  Google Scholar 

  23. Ablayev, F., Ablayev, M., Vasiliev, A.: On the balanced quantum hashing. J. Phys. Confer. 681(1), 012019 (2016)

    Article  Google Scholar 

  24. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Transm. 9(3), 3–11 (1973)

    MATH  Google Scholar 

  25. Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proceedings of 40th Annual Symposium on Foundations of Computer Science, pp. 369–377 (1999)

  26. Nikolopoulos, G.M.: Applications of single-qubit rotations in quantum public-key cryptography. Phys. Rev. A 77(78), 032348 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 61971021, 61571024), Aeronautical Science Foundation of China (No. 2018ZC51016), and the National Key Research and Development Program of China (No. 2016YFC1000307) for valuable helps. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Shang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shang, T., Chen, R. et al. Instantiation of quantum point obfuscation. Quantum Inf Process 21, 29 (2022). https://doi.org/10.1007/s11128-021-03379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03379-4

Keywords

Navigation