Skip to main content
Log in

Universal quantum gates for path photonic qubit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The codification of qubits in internal degrees of freedom (DoF) of light as polarization, transverse modes, and path has received a lot of attention lately. However, the qubit codified in path DoF often plays a limited role in the circuits. In this work, we present a linear optical circuit to codify qubits in path on different bases. We also present geometrical representations for path DoF as Poincaré-like sphere and the Bloch sphere for path qubit. In addition, we designed linear optical circuits to construct universal quantum gates for photonic propagation path DoF. The well-known analogy between degrees of freedom of a coherent laser beam and quantum systems is explored to experimentally simulate the preparation of the qubits as well as the implementation of the proposed circuit for the quantum gates. The results show a clear agreement with the predictions of quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091 (1995)

    Article  ADS  Google Scholar 

  2. Häffner, H., Roos, C.F., Blatt, R.: Quantum computing with trapped ions. Phys. Rep. 469(4), 155 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120 (1998)

    Article  ADS  Google Scholar 

  4. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275(5298), 350 (1997)

    Article  MathSciNet  Google Scholar 

  5. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Modern Phys. 73(3), 565 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  6. Devoret, M.H., Martinis, J.M.: Implementing qubits with superconducting integrated circuits, Experimental aspects of quantum computing pp. 163–203 (2005)

  7. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46 (2001)

    Article  ADS  Google Scholar 

  8. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434(7030), 169 (2005)

    Article  ADS  Google Scholar 

  9. Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80(4), 042310 (2009)

    Article  ADS  Google Scholar 

  10. Hor-Meyll, M., Tasca, D., Walborn, S., Ribeiro, P.S., Santos, M., Duzzioni, E.: Deterministic quantum computation with one photonic qubit. Phys. Rev. A 92(1), 012337 (2015)

    Article  ADS  Google Scholar 

  11. Kielpinski, D., Volin, C., Streed, E.W., Lenzini, F., Lobino, M.: Integrated optics architecture for trapped-ion quantum information processing. Quant. Inf. Process. 15(12), 5315 (2016)

    Article  ADS  Google Scholar 

  12. Dowling, J.P., Franson, J., Lee, H., Milburn, G.J.: in Experimental Aspects of Quantum Computing (Springer, 2005), pp. 205–213

  13. Hayes, A., Gilchrist, A., Myers, C.R., Ralph, T.: Utilizing encoding in scalable linear optics quantum computing. J. Opt. B Quant. Semiclass. Opt. 6(12), 533 (2004)

    Article  ADS  Google Scholar 

  14. Babazadeh, A., Erhard, M., Wang, F., Malik, M., Nouroozi, R., Krenn, M., Zeilinger, A.: High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119(18), 180510 (2017)

    Article  ADS  Google Scholar 

  15. De Oliveira, A., Walborn, S., Monken, C.: Implementing the Deutsch algorithm with polarization and transverse spatial modes. J. Opt. B Quant. Semiclass. Opt. 7(9), 288 (2005)

    Article  ADS  Google Scholar 

  16. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105(3), 030407 (2010)

    Article  ADS  Google Scholar 

  17. D’ambrosio, V., Nagali, E., Walborn, S.P., Aolita, L., Slussarenko, S., Marrucci, L., Sciarrino, F.: Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3(1), 1 (2012)

    Google Scholar 

  18. Balthazar, W.F., Souza, C.E.R., Caetano, D.P., Galvão, E.F., Huguenin, J.A.O., Khoury, A.Z.: Tripartite nonseparability in classical optics. Opt. Lett. 41, 5797 (2016). https://doi.org/10.1364/OL.41.005797

    Article  ADS  Google Scholar 

  19. Borges, C.V.S., Hor-Meyll, M., Huguenin, J.A.O., Khoury, A.Z.: Bell-like inequality for the spin-orbit separability of a laser beam. Phys. Rev. A 82, 033833 (2010)

    Article  ADS  Google Scholar 

  20. Kagalwala, K.H., Di Giuseppe, G., Abouraddy, A.F., Saleh, B.E.A.: Bell’s measure in classical optical coherence. Nat. Photon. (2012). https://doi.org/10.1038/nphoton.2012.312

    Article  Google Scholar 

  21. Pereira, L.J., Khoury, A.Z., Dechoum, K.: Quantum and classical separability of spin-orbit laser modes. Phys. Rev. A 90, 053842 (2014). https://doi.org/10.1103/PhysRevA.90.053842

    Article  ADS  Google Scholar 

  22. Balthazar, W., Braga, D., Lamego, V., Passos, M.M., Huguenin, J.: Spin-orbit x states. Phys. Rev. A 103(2), 022411 (2021)

    Article  ADS  Google Scholar 

  23. Balthazar, W.F., Caetano, D.P., Souza, C.E.R., Huguenin, J.A.O.: Using polarization to control the phase of spatial modes for application in quantum information. Brazilian J. Phys. 44(6), 658 (2014)

    Article  ADS  Google Scholar 

  24. Souza, C.E.R., Borges, C.V.S., Khoury, A.Z., Huguenin, J.A.O., Aolita, L., Walborn, S.P.: Quantum key distribution without a shared reference frame. Phys. Rev. A 77, 032345 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Milione, G., Nguyen, T.A., Leach, J., Nolan, D.A., Alfano, R.R.: Using the nonseparability of vector beams to encode information for optical communication. Opt. Lett. 40(21), 4887 (2015). https://doi.org/10.1364/OL.40.004887

    Article  ADS  Google Scholar 

  26. Khoury, A.Z., Milman, P.: Quantum teleportation in the spin-orbit variables of photon pairs. Phys. Rev. A 83, 060301 (2011)

    Article  ADS  Google Scholar 

  27. Obando, P.C., Passos, M.H.M., Paula, F.M., Huguenin, J.A.O.: Simulating Markovian quantum decoherence processes through an all-optical setup. Quant. Inf. Process. 19(7), 1573 (2020). https://doi.org/10.1007/s11128-019-2499-8

    Article  MathSciNet  Google Scholar 

  28. Passos, M.H.M., Obando, P.C., Balthazar, W.F., Paula, F.M., Huguenin, J.A.O., Sarandy, M.S.: Non-Markovianity through quantum coherence in an all-optical setup. Opt. Lett. 44(10), 2478 (2019). https://doi.org/10.1364/OL.44.002478

    Article  ADS  Google Scholar 

  29. Passos, M.H.M., Balthazar, W.F., Khoury, A.Z., Hor-Meyll, M., Davidovich, L., Huguenin, J.A.O.: Experimental investigation of environment-induced entanglement using an all-optical setup. Phys. Rev. A 97, 022321 (2018)

    Article  ADS  Google Scholar 

  30. Passos, M.H.M., Santos, A.C., Sarandy, M.S., Huguenin, J.A.O.: Optical simulation of a quantum thermal machine. Phys. Rev. A 100, 022113 (2019)

    Article  ADS  Google Scholar 

  31. Balthazar, W.F., Huguenin, J.A.O.: Conditional operation using three degrees of freedom of a laser beam for application in quantum information. J. Opt. Soc. Am. B 33, 1649 (2016). https://doi.org/10.1364/JOSAB.33.001649

    Article  ADS  Google Scholar 

  32. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York, NY, USA (2011)

    MATH  Google Scholar 

  33. Souza, C.E.R., Huguenin, J.A.O., Milman, P., Khoury, A.Z.: Topological phase for spin-orbit transformations on a laser beam. Phys. Rev. Lett. 99, 160401 (2007)

    Article  ADS  Google Scholar 

  34. Sheem, S.K.: Optical fiber interferometers with [3\(\times \) 3] directional couplers: Analysis. J. Appl. Phys. 52(6), 3865 (1981)

    Article  ADS  Google Scholar 

  35. Tearney, G., Bouma, B., Fujimoto, J.: High-speed phase-and group-delay scanning with a grating-based phase control delay line. Opt. Lett. 22(23), 1811 (1997)

    Article  ADS  Google Scholar 

  36. Jones, D.J., Diddams, S.A., Ranka, J.K., Stentz, A., Windeler, R.S., Hall, J.L., Cundiff, S.T.: Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635 (2000)

    Article  ADS  Google Scholar 

  37. Xavier, G., de Faria, G.V., Temporão, G., Von der Weid, J.: Full polarization control for fiber optical quantum communication systems using polarization encoding. Opt. Express 16(3), 1867 (2008)

    Article  ADS  Google Scholar 

  38. Hahn, V., Kalt, S., Sridharan, G.M., Wegener, M., Bhattacharya, S.: Polarizing beam splitter integrated onto an optical fiber facet. Opt. Express 26(25), 33148 (2018)

    Article  ADS  Google Scholar 

  39. Silberhorn, C., Lam, P.K., Weiss, O., König, F., Korolkova, N., Leuchs, G.: Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber. Phys. Rev. Lett. 86(19), 4267 (2001)

    Article  ADS  Google Scholar 

  40. Ciampini, M.A., Orieux, A., Paesani, S., Sciarrino, F., Corrielli, G., Crespi, A., Ramponi, R., Osellame, R., Mataloni, P.: Path-polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 5(4), e16064 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the support of Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), Brazilian Agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), and Fundação Carlos Chagas Filho de Amparo á Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. O. Huguenin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, R.C., Balthazar, W.F. & Huguenin, J.A.O. Universal quantum gates for path photonic qubit. Quantum Inf Process 21, 68 (2022). https://doi.org/10.1007/s11128-022-03415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03415-x

Keywords

Navigation