Skip to main content
Log in

A quantum hash function with grouped coarse-grained boson sampling

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Boson sampling (BS) is an elegant candidate for the proof of quantum supremacy, and the exploration of its practical cryptographic applications is just at the beginning, including one-way functions, private-key cryptography and quantum signature. In order to investigate improvement methods for the combination of cryptography and BS, we propose a quantum hash function with grouped coarse-grained boson sampling (GCGBS) by making full use of the multi-photon characteristics of BS with undiluted conditions, which can eliminate the uncertain outputs, achieve repeatability and reduce the difficulty of experiment. The theoretical analysis and numerical simulation demonstrate an irreversible, anti-collision, anti-brute force search and uniform-distributed GCGBS-based hash function can be achieved with limited resource-consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  2. Morris, R., Thompson, K.: Password security-a case history. Commun. ACM 22(11), 594–597 (1979)

    Article  Google Scholar 

  3. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: International Workshop on Fast Software Encryption, pp. 32-49. Springer, Berlin, Heidelberg (2005)

  4. Chum, C.S., Zhang, X.: Hash function-based secret sharing scheme designs. Secur. Commun. Netw. 6(5), 584–592 (2013)

    Article  Google Scholar 

  5. Merkle, R.C.: One way hash functions and DES. In: Conference on the Theory and Application of Cryptology, pp. 428-446. Springer, New York, NY (1989)

  6. Damgård, I.B.: Collision free hash functions and pubic key signature schemes. In: Workshop on the Theory and Application of of Cryptographic Techniques, pp. 203-216. Springer, Berlin, Heidelberg (1988)

  7. Damgård, I.B.: A design principle for hash functions. In: Conference on the Theory and Application of Cryptology, pp. 416-427. Springer, New York, NY (1989)

  8. Rivest, R.L.: The MD4 message digest algorithm. In: Conference on the Theory and Application of Cryptography, pp. 303-311. Springer, Berlin, Heidelberg (1990)

  9. Rivest, R.L.: “The MD5 message-digest algorithm,” Network Working Group Request for Comments (RFC) 1321 (1992)

  10. Dworkin, M.J.: SHA-3 standard: permutation-based hash and extendable-output functions. Tech. Report (2015). https://doi.org/10.6028/NIST.FIPS.202

    Article  Google Scholar 

  11. Zheng, Y., Pieprzyk, J., Seberry, J.: HAVAL–a one-way hashing algorithm with variable length of output. In: Advances in Cryptology, pp. 81-104. Springer. Berlin, Heidelberg (1992)

  12. Dobbertin, H.: RIPEMD with two round compress function is not collision-free. J. Cryptol. 10(1), 51–69 (1997)

    Article  MathSciNet  Google Scholar 

  13. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. IACR Cryptol. ePrint Arch. 2004, 199 (2004)

    Google Scholar 

  14. Bert den Boer, B., Bosselaers, A.: Collisions for the compression function of MD5. In: Workshop on the Theory and Application of of Cryptographic Techniques, pp. 293-304. Springer, Berlin, Heidelberg (1994)

  15. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Annual International Cryptology Conference, pp. 56-71. Springer, Berlin, Heidelberg (1998)

  16. Dobbertin, H.: Cryptanalysis of MD4. In: International Workshop on Fast Software Encryption, pp. 53-69. Springer, Berlin, Heidelberg (1996)

  17. Den, B., Bosselaers, A.: An attack on the last two rounds of MD4. In: Annual International Cryptology Conference, pp. 194-203. Springer, Berlin, Heidelberg (1992)

  18. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions MD4 and RIPEMD. In: Annual international conference on the theory and applications of cryptographic techniques, pp. 1-18. Springer, Berlin, Heidelberg (2005)

  19. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Annual international conference on the theory and applications of cryptographic techniques, pp. 19-35. Springer, Berlin, Heidelberg (2005)

  20. Dong, X., Sun, S., Shi, D., Gao, F., Wang, X., Hu, L.: Quantum collision attacks on AES-like hashing with low quantum random access memories. In International Conference on the Theory and Application of Cryptology and Information Security, pp. 727-757. Springer, Cham (2020)

  21. Li, D., Zhang, J., Guo, F.Z., Huang, W., Wen, Q.Y., Chen, H.: Discrete-time interacting quantum walks and quantum hash schemes. Quantum Inf. Process. 12(3), 1501–1513 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. Li, D., Zhang, J., Ma, X.W., Zhang, W., Wen, Q.Y.: Analysis of the two-particle controlled interacting quantum walks. Quantum Inf. Process. 12(6), 2167–2176 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yang, Y.G., Zhang, Y.C., Xu, G., Chen, X.B., Zhou, Y.H., Shi, W.M.: Improving the efficiency of quantum Hash function by dense coding of coin operators in discrete-time quantum walk. Sci. China-Phys. Mech. Astron. 61(3), 1–18 (2018)

    Article  ADS  Google Scholar 

  24. Yang, Y.G., Bi, J.L., Chen, X.B., Yuan, Z., Zhou, Y.H., Shi, W.M.: Simple hash function using discrete-time quantum walks. Quantum Inf. Process. 17(8), 1–19 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Rohde, P., Ralph, T.C.: Error tolerance of the boson-sampling model for linear optics quantum computing. Phys. Rev. A 85(2), 022332 (2012)

    Article  ADS  Google Scholar 

  26. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the forty-third annual ACM symposium on Theory of computing, pp. 333-342. (2011). https://doi.org/10.1145/1993636.1993682

  27. Hangleiter, D., Kliesch, M., Eisert, J., Gogolin, C.: Sample complexity of device-independently certified quantum supremacy. Phys. Rev. Lett. 122(21), 210502 (2019)

    Article  ADS  Google Scholar 

  28. Lund, A.P., Bremner, M.J., Ralph, T.C.: Quantum sampling problems, BosonSampling and quantum supremacy. npj Quantum Inform. 3(1), 1-8 (2017)

  29. Tillmann, M., Dakić, B., Heilmann, R., Nolte, S., Szameit, A., Walther, P.: Experimental Boson Sampling. Nat. Photonics 7(7), 540–544 (2013)

    Article  ADS  Google Scholar 

  30. Lund, A.P., Bremner, M.J., Ralph, T.C.: Quantum Sampling Problems, BosonSam- pling and Quantum Supremacy. npj Quantum Inform. 3(1), 1-8 (2017)

  31. Broome, M.A., Fedrizzi, A., Rahimi-Keshari, S., Dove, J., Aaronson, S., Ralph, T.C., White, A.G.: Photonic Boson Sampling in a Tunable Circuit. Science 339(6121), 794–798 (2013)

    Article  ADS  Google Scholar 

  32. Spring, J.B., Metcalf, B.J., Humphreys, P.C., Kolthammer, W.S., Jin, X.M., Barbieri, M., Datta, A., Thomas-Peter, N., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Boson sampling on a photonic chip. Science 339(6121), 798–801 (2013)

    Article  ADS  Google Scholar 

  33. Crespi, A., Osellame, R., Ramponi, R., Brod, D.J., Galvao, E.F., Spagnolo, N., Vitelli, C., Maiorino, E., Mataloni, P., Sciarrino, F.: Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics 7(7), 545–549 (2013)

    Article  ADS  Google Scholar 

  34. Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D.J., Crespi, A., Flamini, F., Giacomini, S., Milani, G., Ramponi, R., Mataloni, P., Osellame, R., Galvao, E.F., Sciarrino, F.: Efficient experimental validation of photonic boson sampling against the uniform distribution. Nat. Photonics 8(8), 615–620 (2014)

    Article  ADS  Google Scholar 

  35. Carolan, J., Meinecke, J.D.A., Shadbolt, P.J., Russell, N.J., Ismail, N., Wörhoff, K., Rudolph, T., Thompson, M.G., O’Brien, J.L., Matthews, J.C.F., Laing, A.: On the experimental verification of quantum complexity in linear optics. Nat. Photonics 8(8), 621–626 (2014)

    Article  ADS  Google Scholar 

  36. Wang, H., He, Y., Li, Y.H., Su, Z.E., Li, B., Huang, H.L., Ding, X., Chen, M.C., Liu, C., Qin, J., Li, J.P., He, Y.M., Schneider, C., Kamp, M., Peng, C.Z., Höfling, S., Lu, C.Y., Pan, J.W.: High-efficiency multiphoton boson sampling. Nat. Photonics 11(6), 361–365 (2017)

    Article  ADS  Google Scholar 

  37. Zhong, H.S., Wang, H., Deng, Y H., Chen, M.C., Peng, L.C., Luo, Y.H., QIN, J., WU, D., DING, X., HU, Y., HU, P., YANG, X.Y., ZHANG, W.J., LI, H., LI, Y.X., JIANG, X., GAN, L., YANG, G.W., YOU, L.X., WANG, Z., LI, L., LIU, N.L., LU, C.Y., Pan, J.W.: Quantum computational advantage using photons. Science 370(6523), 1460-1463 (2020)

  38. Nikolopoulos, G.M.: Cryptographic one-way function based on boson sampling. Quantum Inf. Process. 18(8), 1–25 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. Huang, Z., Rohde, P., Berry, D.W., Kok, P., Dowling, J.P., Lupo, C.: Boson sampling private-key quantum cryptography. arXiv:1905.03013 (2019)

  40. Feng, Y., Shi, R., Shi, J., Zhao, W., Lu, Y., Tang, Y.: Arbitrated quantum signature protocol with boson sampling-based random unitary encryption. J. Phys. A-Math. Theor. 53(13), 135301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  41. Nikolopoulos, G.M., Brougham, T.: Decision and function problems based on boson sampling. Phys. Rev. A 94(1), 012315 (2016)

    Article  ADS  Google Scholar 

  42. Gard, B.T., Motes, K.R., Olson, J.P., Rohde, P.P., Dowling, J.P.: An introduction to boson-sampling. In: From atomic to mesoscale: The role of quantum coherence in systems of various complexities, pp. 167-192. (2015). https://doi.org/10.1142/9789814678704_0008

  43. Gard, B.T., Olson, J.P., Cross, R.M., Kim, M.B., Lee, H., Dowling, J.P.: Inefficiency of classically simulating linear optical quantum computing with Fock-state inputs. Phys. Rev. A 89(2), 022328 (2014)

    Article  ADS  Google Scholar 

  44. Arkhipov, A., Kuperberg, G.: The bosonic birthday paradox. Geomet. Topol. Monograph. 18(1), 10–2140 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Gurvits, L.:. On the complexity of mixed discriminants and related problems. In International Symposium on Mathematical Foundations of Computer Science. pp. 447-458. Springer, Berlin, Heidelberg (2005)

  46. Black P.E.: Fisher-yates shuffle. Dictionary of algorithms and data structures (2005). https://xlinux.nist.gov/dads/HTML/fisherYatesShuffle.html

  47. Anantharaman, T., Campbell, M.S., Hsu, F.: Singular extensions-adding selectivity to brute-force searching. Artif. Intell. 43(1), 99–109 (1990)

    Article  Google Scholar 

  48. Girault M., Cohen R., Campana M.: A generalized birthday attack. In: Workshop on the Theory and Application of of Cryptographic Techniques, pp. 129-156. Springer, Berlin, Heidelberg (1988)

  49. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. In: Latin American Symposium on Theoretical Informatics, pp. 163-169. Springer, Berlin, Heidelberg (1998)

  50. Dong, X., Sun, S., Shi, D., Gao, F.,Wang, X., Hu, L.: Quantum collision attacks on AES-like hashing with low quantum random access memories. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 727-757. Springer, Cham (2020)

  51. Ryser, H.J.: Combinatorial Mathematics. American Mathematical Soc. America (1963)

  52. Clifford, P., Clifford, R.: Faster classical Boson Sampling. arXiv preprint arXiv:2005.04214 (2020)

  53. Shi, J., Tang, Y., Lu, Y., Feng, Y., Shi, R., Zhang, S.: Quantum circuit learning with parameterized Boson sampling. IEEE Trans. Knowl. Data Eng. (2021). https://doi.org/10.1109/TKDE.2021.3095103

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61972418, 61872390, 61801522, U1736113), the Natural Science Foundation of Hunan Province (Grant Nos. 2020JJ4750, 2019JJ40352), the Special Foundation for Distinguished Young Scientists of Changsha (Grant No. kq1905058), the CCF-Baidu Open Fund(Grant No. 2021PP15002000), the Outstanding Youth Program of Education Department of Hunan (Grant No. 21B0228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: the numerical example of Fisher–Yates Shuffle algorithm based post-processing algorithm G

Appendix: the numerical example of Fisher–Yates Shuffle algorithm based post-processing algorithm G

Here, we illustrate the numerical example of algorithm G. The parameters of GCGBS used is \(M=10, N=3, d=8, l=5\), then the MPB of single-photon case \(\mathbb {B}_{\mu }\) belongs to \(\{0,1,\)...\(,d-1\}\) and the MPB of multi-photon case \(\mathbb {B}_{\nu }\) belongs to \(\{0,1,\)...\(,M-1\}\). Assume \(\mathbb {B}_{\mu }\) and \(\mathbb {B}_{\nu }\) obtained before sub-algorithm G are \(\mathbb {B}_{\mu } = \{3, 5, 0, 7, 2\}\) and \(\mathbb {B}_{\nu } = \{4, 6, 2, 0, 5\}\). The process of sub-algorithm G is shown in Table 1. The binary hash value obtained by the sub-algorithm G is y=0b00100000111100110101.

Table 1 Process of sub-algorithm G

We introduce the MPB of multi-photon case as the random number of the Fisher–Yates Shuffle algorithm in sub-algorithm G, which is with two advantages. First, the output result is reproducible. Second, the multi-photon resources of dilute BS are not wasted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Lu, Y., Feng, Y. et al. A quantum hash function with grouped coarse-grained boson sampling. Quantum Inf Process 21, 73 (2022). https://doi.org/10.1007/s11128-022-03416-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03416-w

Keywords

Navigation