Skip to main content
Log in

Improved two-qubit quantum state sharing protocol based on entanglement swapping of bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In a recent paper (Ma, Int J Theor Phys 59: 1844–1853, 2020), a multiparty quantum state sharing protocol based on entanglement swapping of Bell states was presented. However, as we show, when the number of agents is more than three, this protocol is insecure in the sense that the first agent and the last one can gain access to the dealer’s secret state without the others’ cooperation by collusion attack in this protocol. Hence, we propose two improved versions of this protocol in this paper. Security analysis indicates that two improved protocols are secure against the collusion attack and entangled probe attack. The successful ratio analysis shows that two improved protocols can be achieved with probability of 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hillery, M., Buzek, V., Berthiaunie, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247–251 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. Li, X., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  4. Symul, T., Bowen, W.P., et al.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  5. Song, X.L., Liu, Y.B., Deng, H.Y.: (t, n) Threshold d-level quantum secret sharing. Sci. Rep. 7, 6366 (2017)

    Article  ADS  Google Scholar 

  6. Lu, C.B., Miao, F.Y., Meng, K.J., Yu, Y.: Threshold quantum secret sharing based on single qubit. Quant. Inf. Process. 17(3), 64 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bai, C.M., Li, Z.H., Si, M.M., Li, Y.M.: Quantum secret sharing for a general quantum access structure. Eur. Phys. J. D 71(10), 255 (2017)

    Article  ADS  Google Scholar 

  8. Kartick, S., Hari, O.: Efficient quantum secret sharing without a trusted player. Quant. Inf. Process. 19(2), 1–15 (2020)

    ADS  MathSciNet  Google Scholar 

  9. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  10. Yin, A.H., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60(1), 265–273 (2021)

    Article  MathSciNet  Google Scholar 

  11. Tian, Y., Li, J., Chen, X.B., et al.: An efficient semi-quantum secret sharing protocol of specific bits. Quant. Inf. Process. 20(6), 217 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quant. Inf. Process. 12(1), 331–344 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Yang, C.W., Tsai, C.W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states. Quant. Inf. Process. 19, 162 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhou, R.G., Huo, M.Y., Hu, W.W., Zhao, Y.S.: Dynamic multiparty quantum secret sharing with a trusted party based on generalized GHZ State. IEEE Access 9, 22986–22995 (2021)

    Article  Google Scholar 

  15. Hu, W.W., Zhou, R.G., Li, X., et al.: A novel dynamic quantum secret sharing in high-dimensional quantum system. Quant. Inf. Process. 20(5), 159 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wang, Y., Tian, C.X., Su, Q.: Measurement-device-independent quantum secret sharing and quantum conference based on Gaussian cluster state. Sci. China Inform. Sci. 62, 072501 (2019)

    Article  MathSciNet  Google Scholar 

  17. Gao, Z.K., Li, T., Li, Z.H.: Deterministic measurement-device-independent quantum secret sharing. Sci. China Phys. Mech. Astron. 63, 120311 (2020)

    Article  ADS  Google Scholar 

  18. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  19. Iqbal, H., Krawec, W.O.: Semi-quantum cryptography. Quant. Inf. Process. 19(3), 97 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A. 72(4), 044301 (2005)

    Article  ADS  Google Scholar 

  21. Li, X.H., Zhou, P., Li, C.Y., et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B 39(8), 1975–1983 (2006)

    Article  ADS  Google Scholar 

  22. Gordon, G., Rigolin, G.: Generalized quantum-state sharing. Phys. Rev. A 73(6), 062316 (2006)

    Article  ADS  Google Scholar 

  23. Wang, Z.Y., Liu, Y.M., Wang, D., et al.: Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt. Commun. 276(2), 322–326 (2007)

    Article  ADS  Google Scholar 

  24. Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 42, 333–340 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wang, Z.Y., Yuan, H., Shi, S.H., et al.: Three-party qutrit-state sharing. Eur. Phys. J. D 41(2), 371–375 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wang, T.J., Zhou, H.Y., Deng, F.G.: Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements. Phys. A 387(18), 4716–4722 (2008)

    Article  MathSciNet  Google Scholar 

  27. Li, D., Wang, R., Zhang, F., et al.: Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quant. Inf. Process. 14, 1103–1116 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Qin, H., Tso, R., Dai, Y.W.: Multi-dimensional quantum state sharing based on quantum Fourier transform. Quant. Inf. Process. 17, 48 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Cao, H., Ma, W.: Verifiable threshold quantum state sharing scheme. IEEE Access 6(1), 10453–10457 (2018)

    Article  Google Scholar 

  30. Lee, S.M., Lee, S.W., Jeong, H., Park, H.S.: Quantum teleportation of shared quantum secret. Phys. Rev. Lett. 124(6), 060501 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. Huang, Z.M., He, Z.M., Ye, Y.Y., Sheng, X.K.: Quantum state sharing under noisy environment. Int. J. Theor. Phys. 60(4), 1254–1260 (2021)

    Article  MathSciNet  Google Scholar 

  32. Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  33. Wang, T.Y., Wen, Z.L.: One-time proxy signature based on quantum cryptography. Quant. Inf. Process. 11(2), 455–463 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  34. MA L.Y.: Two-qubit quantum state sharing protocol based on bell state. Int. J. Theor. Phys. 59: 1844–1853 (2020).

  35. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  36. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  37. Kwiat, P.G., Mattle, K., Weinfurther, H., Zeilinger, A.: New high-intensity source of polarization-entangled photon Pairs. Phys. Rev. Lett. 75, 4337 (1995)

    Article  ADS  Google Scholar 

  38. Li, T., Miranowicz, A., Xia, K.Y., Nori, F.: Resource-efficient analyzer of Bell and Greenberger-Horne-Zeilinger states of multiphoton systems. Phys. Rev. A 100, 052302 (2019)

    Article  ADS  Google Scholar 

  39. Massoud, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828–1831 (2012)

    Article  ADS  Google Scholar 

  40. Song, Y., Li, Y., Wang, W.: Multiparty quantum direct secret sharing of classical information with bell states and bell measurements. Int. J. Theor. Phys. 57(5), 1559–1571 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 6217070290 and Shanghai Science and Technology Project under Grant No. 21JC1402800 and 20040501500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The symbols contained in following two tables are explain as: (1) \(\left| {\Phi^{ + } } \right\rangle ,\left| {\Phi^{ - } } \right\rangle ,\left| {\Psi^{ + } } \right\rangle ,\left| {\Psi^{ - } } \right\rangle\) are four different Bell states, i.e., \(\left| {\Phi^{ \pm } } \right\rangle = \frac{1}{\sqrt 2 }\left( {\left| {00} \right\rangle \pm \left| {11} \right\rangle } \right)\),\(\left| {\Psi^{ \pm } } \right\rangle = \frac{1}{\sqrt 2 }\left( {\left| {01} \right\rangle \pm \left| {10} \right\rangle } \right)\); (2) \(I,\sigma_{x} ,\sigma_{y} ,\sigma_{z}\) are four different Pauli operators, and the corresponding matrices are defined as: \(I = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} } \right), \, \sigma_{x} = \left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right), \, \sigma_{y} = \left( {\begin{array}{*{20}c} 0 & { - i} \\ i & 0 \\ \end{array} } \right), \, \sigma_{z} = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & { - 1} \\ \end{array} } \right)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhou, RG. & Hu, W. Improved two-qubit quantum state sharing protocol based on entanglement swapping of bell states. Quantum Inf Process 21, 100 (2022). https://doi.org/10.1007/s11128-022-03418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03418-8

Keywords

Navigation