Skip to main content
Log in

Probability amplitude-encoded multichannel representation for quantum audio signals

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A probability amplitude-encoded multichannel representation for quantum audio signals (or simply PMQA) is proposed in this study. As an entangled state, PMQA requires only one qubit to epitomise the bipolar decimal amplitude values of a quantum audio signal, which leads to considerable conservation of qubit resources relative to similar models. Furthermore, the representation provides an embodiment of a signal that can be manipulated via quantum circuits for signal and channel level operations to merge, add, invert, delay, swap, etc. different audio contents. Compared to available quantum audio representations, the proposed PMQA provides lower complexity, and its operations provide essential building blocks for applications in future quantum audio processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Cobos, M.: https://signalprocessingsociety.org/publications-resources/blog/signal-processing-multimedia-world-how-science-behind-our-digital-life, Accessed on August 15th, (2020)

  2. Eldar, Y., Oppenheim, A.: Quantum signal processing. IEEE Sig. Process. Mag. 19(6), 12–32 (2002)

    Article  ADS  Google Scholar 

  3. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Iliyasu, A.: Towards realising secure and efficient image and video processing applications on quantum computers. Entropy 15(8), 2874–2974 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467C – 488 (1982)

    Article  MathSciNet  Google Scholar 

  6. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. In: Proceedings of the Royal Society of London, 553–558 (1992)

  7. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th annual symposium on foundations of computer science, 124–134 (1994)

  8. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM symposium on theory of computing, 212–219 (1996)

  9. Yan, F., Iliyasu, A., Venegas-Andraca, S.: A survey of quantum image representations. Quan. Inf. Process. 15, 1–35 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Le, P., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quan. Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  11. Iliyasu, A., Le, P., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

    Article  MathSciNet  Google Scholar 

  12. Yan, F., Iliyasu, A., Hirota, K., Yang, H.: Strategy for quantum image stabilization. Sci. China Inf. Sci. 59, 052102 (2016)

    Article  Google Scholar 

  13. Yan, F., Iliyasu, A., Khan, A., Yang, H.: Measurements-based moving target detection in quantum video. Int. J. Theor. Phys. 55(4), 2162–2173 (2016)

    Article  Google Scholar 

  14. Iliyasu, A., Le, P., Dong, F., Hirota, K.: A framework for representing and producing movies on quantum computers. Int. J. Quan. Inform. 9, 1459–1497 (2011)

    Article  Google Scholar 

  15. Iliyasu, A., Le, P., Dong, F., Hirota, K. Restricted geometric transformations and their applications for quantum image watermarking and authentication. In: Proceedings of the 10th Asian conference on quantum information science (2010)

  16. Yan, F., Iliyasu, A., Le, P.: Quantum image processing: a review of advances in its security technologies. Int. J. Quan. Inform. 15, 1730001 (2017)

    Article  MathSciNet  Google Scholar 

  17. Abd-El-Atty, B., Iliyasu, A., Alanezi, A., et al.: Optical image encryption based on quantum walks. Opt. Lasers Eng. 138, 106403 (2021)

    Article  Google Scholar 

  18. Yan, F., Venegas-Andraca, S.: Quantum Image Processing. Springer, Berlin (2020)

    Book  Google Scholar 

  19. Iliyasu, A.: Roadmap to talking quantum movies: a contingent inquiry. IEEE Access 7, 23864–23913 (2019)

    Article  Google Scholar 

  20. Wang, J.: QRDA: Quantum representation of digital audio. Int. J. Theor. Phys. 55(3), 1622–1641 (2015)

    Article  Google Scholar 

  21. Yan, F., Iliyasu, A., et al.: Flexible representation and manipulation of audio signals on quantum computers. Theoret. Comput. Sci. 752, 71–85 (2018)

    Article  MathSciNet  Google Scholar 

  22. Li, P., Wang, B., Xiao, H., Liu, X.: Quantum representation and basic operations of digital signals. Int. J. Theor. Phys. 57, 3242–3270 (2018)

    Article  Google Scholar 

  23. Sahin, E., Yilmaz, I.: QRMA: quantum representation of multichannel audio. Quant. Inf. Process. 18, 209 (2019)

    Article  ADS  Google Scholar 

  24. Barenco, A., Bennett, C., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  25. Hodgson, J.: Understanding Records, 2nd edn. Bloomsbury Pbulishing, London (2019)

    Google Scholar 

  26. Yan, F., Li, N., Hirota, K.: QHSL: a quantum hue, saturation, and lightness color model. Inf. Sci. 577, 196–213 (2021)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quan. Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quan. Inf. Process. 16(2), 42 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  30. Landeuer, R.: Information is physical. Phys. Today 44(5), 23–29 (1991)

    Article  ADS  Google Scholar 

  31. Chen, K., Yan, F., Iliyasu, A., Zhao, J.: Exploring the implementation of steganography protocols on quantum audio signals. Int. J. Theor. Phys. 57(2), 476–494 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This study is sponsored by the Prince Sattam Bin Abdulaziz University, Saudi Arabia via the Deanship for Scientific Research funding for the Advanced Computational Intelligence and Intelligent Systems Engineering (ACIISE) Research Group Project Number 2020/01/12173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah M. Iliyasu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Gao, S., Iliyasu, A.M. et al. Probability amplitude-encoded multichannel representation for quantum audio signals. Quantum Inf Process 21, 95 (2022). https://doi.org/10.1007/s11128-022-03435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03435-7

Keywords

Navigation