Skip to main content
Log in

Quantum multi-proxy blind signature based on cluster state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Different from traditional digital signatures, quantum blind signatures can implement a signature without knowing the specific content, and their security is guaranteed by the basic principles of quantum mechanics with unconditional security. Based on the blind signature, multi-proxy signature can avoid internal attacks efficiently by dispersing the authority of proxy signers. In this paper, we propose a new quantum multi-proxy blind signature scheme based on cluster states. We apply the quantum teleportation to transmit data using the four-particle cluster state as a channel. Then, a quantum multi-proxy blind signature scheme is designed. According to the security analysis, blindness, undeniability and unforgeability are all equipped in our scheme. Meanwhile, compared with existing schemes, four-particle cluster states are required as quantum channels in our scheme which uses fewer resources to transmit data and has higher efficiency of signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Li, X., Chen, K., Sun, L.: Certificateless signature and proxy signature schemes from bilinear pairings. Lith. Math. J. 45(1), 76–83 (2005)

    Article  MathSciNet  Google Scholar 

  2. Zhang, J., Bai, W., Wang, Y.: Non-interactive ID-based proxy re-signature scheme for IoT based on mobile edge computing. IEEE Access 7, 37865–37875 (2019)

    Article  Google Scholar 

  3. Patonico, S. et al. : Elliptic curve-based proxy re-signcryption scheme for secure data storage on the cloud. Concurr Comput Pract Exp 3 (2020)

  4. Shor, P. W.: Algorithms for quantum computation: discrete logarithm and factoring. In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, pp. 124–134 (1994)

  5. Shor, P.W.: Polynomialtime algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  6. Heisenberg, W.: The actual content of quantum theoretical kinematics and mechanic. zhurnal physik (1984)

  7. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  8. Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology Proc. Crypto 82 (1983)

  9. Xu, G.B.: Novel quantum proxy signature without entanglement. Int. J. Theor. Phys. (2015). https://doi.org/10.1007/s10773-014-2491-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Mambo, M.M., Usuda, K., Okamoto, E.: Proxy signatures: delegation of the power to sign messages. IEEE Trans. Fundam. A 79(9), 1338–1354 (1996)

    Google Scholar 

  11. Tan, R., Yang, Q.: Comments on the "Efficient quantum multi-proxy signature. Quantum Inf. Process. 19(9), 1–13 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint quant-ph/0105032 (2001)

  13. Wen, X.J., Liu, Y., Sun, Y.: Quantum multi-signature protocol based on teleportation. Zeitschrift Für Naturforschung A 62(3–4), 147–151 (2007)

  14. Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17(2), 415 (2008)

    Article  ADS  Google Scholar 

  15. Shi, J., et al.: A multiparty quantum proxy group signature scheme for the entangled-state message with quantum Fourier transform. Quantum Inf. Process. 10(5), 653–670 (2011)

    Article  MathSciNet  Google Scholar 

  16. Cao, H.J., et al.: A quantum proxy weak blind signature scheme based on controlled quantum teleportation. Int. J. Theor. Phys. 54(4), 1325–1333 (2015)

    Article  MathSciNet  Google Scholar 

  17. Niu, X.F., et al.: A practical e-payment protocol based on quantum multi-proxy blind signature. Commun. Theor. Phys. 70(11), 23–27 (2018)

    ADS  MathSciNet  Google Scholar 

  18. Tian, J.H., Zhang, J.Z., Li, Y.P.: A quantum multi-proxy blind signature scheme based on genuine four-qubit entangled state. Int. J. Theor. Phys. 55, 809–816 (2016)

    Article  MathSciNet  Google Scholar 

  19. Cao, H.J., Yu, Y.F., Song, Q., et al.: A quantum proxy weak blind signature scheme based on controlled quantum teleportation. Int. J. Theor. Phys. 54, 1325–1333 (2015)

    Article  MathSciNet  Google Scholar 

  20. Zeng, C., Zhang, J.Z., Xie, S.C.: A blind signature scheme for quantum agents based on three-particle GHZ states with Bell states. Small Microcomput. Syst. 38(07), 1485–1489 (2017)

    Google Scholar 

  21. Cao, H.J., et al.: A quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 53(2), 419–425 (2014)

    Article  MathSciNet  Google Scholar 

  22. Tiliwalidi, Kalibinuer, et al.: A proxy blind signature scheme of quantum information transmission in two-particle state. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04095-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Shao, A.X., Zhang, J.Z., Xie, S.C.: A quantum multi-proxy multi-blind-signature scheme based on genuine six-qubit entangled state. Int. J. Theor. Phys. 55, 5216–5224 (2016)

    Article  Google Scholar 

  24. Ge, L., et al.: A novel quantum group proxy blind signature scheme based on five-qubit entangled state. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04093-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, B.M., Lin, L.D., Wang, W., et al.: Security analysis of particular quantum proxy blind signature against the forgery attack. Int. J. Theor. Phys. 59, 465–473 (2020)

    Article  MathSciNet  Google Scholar 

  26. Guo, W., Zhang, J.Z., Li, Y.P., et al.: Multi-proxy strong blind quantum signature scheme. Int. J. Theor. Phys. 55, 3524–3536 (2016)

    Article  MathSciNet  Google Scholar 

  27. Yan, L., Chang, Y., Zhang, S., et al.: A quantum multi-proxy weak blind signature scheme based on entanglement swapping. Int. J. Theor. Phys. 56, 634–642 (2017)

    Article  Google Scholar 

  28. Wang, G.Y., Fang, X.M., Tan, X.H.: Quantum secure direct communication with cluster state. Chin. Phys. Lett. 23(10), 2658–2661 (2006)

    Article  ADS  Google Scholar 

  29. Yuan, H., Song, J.: An efficient deterministic secure quantum communication scheme with Cluster state. Int. J. Quantum Inform. 7(3), 689–696 (2009)

    Article  Google Scholar 

  30. Cao, W.F., Yang, Y.G., Wen, Q.Y.: Quantum secure direct communication with cluster states. Sci. China Phys. Mech. Astron. 07, 1271–1275 (2010)

    Article  ADS  Google Scholar 

  31. Shen, D., Ma, W., Wang, L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13(10), 2313–2324 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. Li, Y.H., et al.: Quantum teleportation of a four-qubit state by using six-qubit cluster state. Int. J. Theor. Phys. 55(8), 3547–3550 (2016)

    Article  Google Scholar 

  33. Yang, Y.G., et al.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. Fan, L.: A novel quantum blind signature scheme with four-particle cluster states. Int. J. Theor. Phys. 55(3), 1558–1567 (2016)

    Article  ADS  Google Scholar 

  35. Fatahi, N., et al.: High-efficient arbitrated quantum signature scheme based on cluster states. Int. J. Theor. Phys. 56(2), 609–616 (2017)

    Article  Google Scholar 

  36. Liang, X.Q., Wu, Y.L., Zhang, Y.H., Wang, S.S., Xu, G.B.: Quantum multi-proxy blind signature scheme based on four-qubit cluster states. Int. J. Theor. Phys. 58(1), 31–39 (2019)

    Article  Google Scholar 

  37. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore. pp. 175–179 (1984)

  38. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  39. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 90, 157901 (2002)

    Google Scholar 

Download references

Acknowledgements

Project was supported by Joint Funding Project of Beijing Municipal Commission of Education and Beijing Natural Science Fund Committee (KZ201710015010), the Scientific Research Common Program of Beijing Municipal Commission of Education (KM202010015009\(\pounds \)©, the Initial Funding for the Doctoral Program of BIGC (27170120003/020), the initial funding for the Doctoral Program of BIGC (27170120003/022), BIGC Project (Eb202004) and BIGC Project (Ec202007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Zhen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JJ., You, FC. & Li, ZZ. Quantum multi-proxy blind signature based on cluster state. Quantum Inf Process 21, 104 (2022). https://doi.org/10.1007/s11128-022-03446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03446-4

Keywords

Navigation