Skip to main content
Log in

Extended single-photon entanglement-based phase-matching quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Twin-field quantum key distribution (TF-QKD) is a hot topic in the field of quantum information due to its potential to break the key rate linear bound. Among all the variants, the single-photon entanglement-based phase-matching QKD protocol (SEPM-QKD) has been proposed, which is an entangled version of TF-QKD. However, a significant defect of SEPM-QKD is that its key rate is much lower than other QKDs. In this paper, we proposed an extended SEPM-QKD protocol with the help of delocalized state measurement. The proposed scheme can be regarded as TF-QKD connected by a single-photon entanglement-based quantum repeater. A security proof based on entanglement purification protocol in wave-state space against all channel attacks has been presented. Violation of CHSH-type Bell’s inequality is used to test the delocalized quantum correlation of the source. The simulation results show that the key rate of extended SEPM-QKD has the same performance as phase-matching (PM)-QKD and TF-QKD, while the communication distance is almost twice that of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400 (2018)

    Article  ADS  Google Scholar 

  2. Curty, M., Azuma, K., Lo, H.-K.: Simple security proof of twin-field type quantum key distribution protocol. npj Quantum Inform. 5(1), 1–6 (2019)

    Article  Google Scholar 

  3. Zhong, X., Hu, J., Curty, M., Qian, L., Lo, H.-K.: Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett. 123(10), 100506 (2019)

    Article  ADS  Google Scholar 

  4. Yin, H.-L., Fu, Y.: Measurement-device-independent twin-field quantum key distribution. Sci. Rep. 9(1), 3045 (2019)

    Article  ADS  Google Scholar 

  5. Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8(3), 031043 (2018)

    Google Scholar 

  6. Zhao, S., Zeng, P., Cao, W.-F., Xu, X.-Y., Zhen, Y.-Z., Ma, X., Li, L., Liu, N.-L., Chen, K.: Phase-matching quantum cryptographic conferencing. Phys. Rev. Appl. 14(2), 024010 (2020)

    Article  ADS  Google Scholar 

  7. Jin, A., Zeng, P., Penty, R.V., Ma, X.: Reference-frame-independent design of phase-matching quantum key distribution. Phys. Rev. Appl. 16(3), 034017 (2021)

    Article  ADS  Google Scholar 

  8. Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98(6), 062323 (2018)

    Article  ADS  Google Scholar 

  9. Yu, Z.-W., Hu, X.-L., Jiang, C., Xu, H., Wang, X.-B.: Sending-or-not-sending twin-field quantum key distribution in practice. Sci. Rep. 9(1), 3080 (2019)

    Article  ADS  Google Scholar 

  10. Liu, Y., Yu, Z.-W., Zhang, W., Guan, J.-Y., Chen, J.-P., Zhang, C., Hu, X.-L., Li, H., Jiang, C., Lin, J., et al.: Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123(10), 100505 (2019)

    Article  ADS  Google Scholar 

  11. Jiang, C., Yu, Z.-W., Hu, X.-L., Wang, X.-B.: Unconditional security of sending or not sending twin-field quantum key distribution with finite pulses. Phys. Rev. Appl. 12(2), 024061 (2019)

    Article  ADS  Google Scholar 

  12. Cui, C., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11(3), 034053 (2019)

    Article  ADS  Google Scholar 

  13. Li, W., Zhao, S.: Wave-particle duality in single-photon entanglement. J. Phys. Commun 5(5), 055002 (2021)

    Article  Google Scholar 

  14. Wang, Q., Wang, X.-B., Guo, G.-C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75(1), 012312 (2007)

    Article  ADS  Google Scholar 

  15. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  16. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  17. Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86(6), 062319 (2012)

    Article  ADS  Google Scholar 

  18. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nature Commun. 8, 15043 (2017)

    Article  ADS  Google Scholar 

  19. Li, W., Wang, L., Zhao, S.: Phase matching quantum key distribution based on single-photon entanglement. Sci. Rep. 9(1), 1–12 (2019)

    ADS  Google Scholar 

  20. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without bell’s theorem. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rubenok, A., Slater, J.A., Chan, P., Lucio-Martinez, I., Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111(13), 130501 (2013)

    Article  ADS  Google Scholar 

  22. Tan, S., Walls, D., Collett, M.: Nonlocality of a single photon. Phys. Rev. Lett. 66(3), 252 (1991)

    Article  ADS  Google Scholar 

  23. Van Enk, S.: Single-particle entanglement. Phys. Rev. A 72(6), 064306 (2005)

    Article  ADS  Google Scholar 

  24. Santarelli, G., Clairon, A., Lea, S., Tino, G.: Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 ghz. Optics Commun. 104(4–6), 339–344 (1994)

    Article  ADS  Google Scholar 

  25. Lee, H.-W., Kim, J.: Quantum teleportation and bell’s inequality using single-particle entanglement. Phys. Rev. A 63(1), 012305 (2000)

    Article  ADS  Google Scholar 

  26. Björk, G., Laghaout, A., Andersen, U.L.: Deterministic teleportation using single-photon entanglement as a resource. Phys. Rev. A 85(2), 022316 (2012)

    Article  ADS  Google Scholar 

  27. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)

    Article  ADS  Google Scholar 

  28. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  29. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  30. Heaney, L., Cabello, A., Santos, M.F., Vedral, V.: Extreme nonlocality with one photon. New J. Phys. 13(5), 053054 (2011)

    Article  ADS  Google Scholar 

  31. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880 (1969)

    Article  ADS  Google Scholar 

  32. Aspect, A., Grangier, P., Roger, G.: Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: a new violation of bell’s inequalities. Phys. Rev. Lett. 49(2), 91 (1982)

    Article  ADS  Google Scholar 

  33. Li, W., Zhao, S.: Bell’s inequality tests via correlated diffraction of high-dimensional position-entangled two-photon states. Sci. Rep. 8(1), 1–8 (2018)

    ADS  MathSciNet  Google Scholar 

  34. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  35. Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.-S., Peres, A.: Optimal eavesdropping in quantum cryptography. i. information bound and optimal strategy. Phys. Rev. A 56(2), 1163 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  36. Tang, Y.-L., Yin, H.-L., Chen, S.-J., Liu, Y., Zhang, W.-J., Jiang, X., Zhang, L., Wang, J., You, L.-X., Guan, J.-Y., et al.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113(19), 190501 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by China Postdoctoral special funding project (2020T130289), the National Natural Science Foundation of China (No. 61871234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, L. & Zhao, S. Extended single-photon entanglement-based phase-matching quantum key distribution. Quantum Inf Process 21, 124 (2022). https://doi.org/10.1007/s11128-022-03464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03464-2

Keywords

Navigation