Skip to main content
Log in

Micro–micro and micro–macro entanglement witnessing via the geometric phase in an impurity-doped Bose–Einstein condensate

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a theoretical proposal to witness micro–micro and micro–macro entanglement in terms of the geometric phase based on a micro–macro hybrid quantum system, the impurity-doped BEC system. We find direct relations between quantum entanglement quantified by quantum concurrence and the geometric phase of the impurity qubits and demonstrate that the geometric phase can witness micro–micro and micro–macro entanglement between the impurity qubits and the BEC. Our work provides a new insight to witness micro–micro and micro–macro entanglement in micro–macro hybrid quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dowling, J.P., Milburn, G.J.: Quantum technology: the second quantum revolution. Philos. Trans. R. Soc. Lond. A 361, 1655–1674 (2003). https://doi.org/10.1098/rsta.2003.1227

    Article  ADS  MathSciNet  Google Scholar 

  2. Deutsch, I.H.: Harnessing the power of the second quantum revolution. PRX Quantum 1, 020101 (2020). https://doi.org/10.1103/PRXQuantum.1.020101

    Article  Google Scholar 

  3. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019). https://doi.org/10.1103/RevModPhys.91.025001

    Article  ADS  MathSciNet  Google Scholar 

  4. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Horodecki, M., Horodecki, P., Horodecki, R.: Inseparable two spin-$\frac{1}{2}$ density matrices can be distilled to a singlet form. Phys. Lett. A 78, 574 (1997)

    Article  Google Scholar 

  6. Chruciski, D., Sarbicki, G.J.: Entanglement witnesses: construction, analysis and classification. Phys. A Math. Theor. 47, 483001 (2014). https://doi.org/10.1088/1751-8113/47/48/483001

    Article  MathSciNet  MATH  Google Scholar 

  7. Hyllus, P., Gühne, O., Bru, D., Lewenstein, M.: Relations between entanglement witnesses and Bell inequalities. Phys. Rev. A 72, 012321 (2005). https://doi.org/10.1103/PhysRevA.72.012321

    Article  ADS  MathSciNet  Google Scholar 

  8. Wallraff, A., Schuster, D., Blaisi, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 431, 162–167 (2004). https://doi.org/10.1038/nature02851

    Article  ADS  Google Scholar 

  9. Liao, J.Q., Huang, J.F., Liu, Y.X., Kuang, L.M., Sun, C.P.: Quantum switch for single-photon transport in a coupled superconducting transmission-line-resonator array. Phys. Rev. A 80, 014301 (2009). https://doi.org/10.1103/PhysRevA.80.014301

    Article  ADS  Google Scholar 

  10. Aoki, T., Dayan, B., Wilcut, E., Bowen, W.P., Parkins, A.S., Kippenberg, T.J., Vahala, K.J., Kimble, H.J.: Observation of strong coupling between one atom and a monolithic microresonator. Nature (London) 443, 671–674 (2006). https://doi.org/10.1038/nature05147

    Article  ADS  Google Scholar 

  11. Zipkes, C., Palzer, S., Sias, C., Köhl, M.: A trapped single ion inside a Bose–Einstein condensate. Nature (London) 464, 388–391 (2010). https://doi.org/10.1038/nature08865

    Article  ADS  Google Scholar 

  12. Schmid, S., Härter, A., Denschlag, J.H.: Dynamics of a cold trapped ion in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 133202 (2010). https://doi.org/10.1103/PhysRevLett.105.133202

    Article  ADS  Google Scholar 

  13. Gigan, S., Böhm, H.R., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J.B., Schwab, K.C., Bäuerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature (London) 444, 67–70 (2006). https://doi.org/10.1038/nature05273

    Article  ADS  Google Scholar 

  14. Arcizet, O., Cohadon, P.F., Briant, T., Pinard, M., Heidmann, A.: Radiation-pressure cooling and optomechanical instability of a micromirror. Nature (London) 444, 71–74 (2006). https://doi.org/10.1038/nature05244

    Article  ADS  Google Scholar 

  15. Kleckner, D., Bouwmeester, D.: Sub-kelvin optical cooling of a micromechanical resonator. Nature (London) 444, 75–78 (2006). https://doi.org/10.1038/nature05231

    Article  ADS  Google Scholar 

  16. Liao, J.Q., Law, C.K., Kuang, L.M., Nori, F.: Enhancement of mechanical effects of single photons in modulated two-mode optomechanics. Phys. Rev. A 92, 013822 (2015). https://doi.org/10.1103/PhysRevA.92.013822

    Article  ADS  Google Scholar 

  17. Liao, J.Q., Huang, J.F., Tian, L.: Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems. Phys. Rev. A 93, 033853 (2016). https://doi.org/10.1103/PhysRevA.93.033853

    Article  ADS  Google Scholar 

  18. Liao, J.Q., Tian, L.: Macroscopic quantum superposition in cavity optomechanics. Phys. Rev. Lett. 116, 163602 (2016). https://doi.org/10.1103/PhysRevLett.116.163602

    Article  ADS  Google Scholar 

  19. Liao, J.Q., Cheung, H.K., Law, C.K.: Spectrum of single-photon emission and scattering in cavity optomechanics. Phys. Rev. A 85, 025803 (2012). https://doi.org/10.1103/PhysRevA.85.025803

    Article  ADS  Google Scholar 

  20. Martini, F.D., Sciarrino, F., Vitelli, C., Cataliotti, F.S.: Coherent scattering of a multiphoton quantum superposition by a mirror BEC. Phys. Rev. Lett. 104, 050403 (2010). https://doi.org/10.1103/PhysRevLett.104.050403

    Article  Google Scholar 

  21. Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003). https://doi.org/10.1103/PhysRevLett.91.130401

    Article  ADS  MathSciNet  Google Scholar 

  22. Bruno, N., Martin, A., Sekatski, P., Sangouard, N., Thew, R.T., Gisin, N.: Displacement of entanglement back and forth between the micro and macro domains. Nat. Phys. 9, 545–548 (2013). https://doi.org/10.1038/nphys2681

    Article  Google Scholar 

  23. Martini, F.D., Sciarrino, F., Vitelli, C.: Entanglement test on a microscopic–macroscopic system. Phys. Rev. Lett. 100, 253601 (2008). https://doi.org/10.1103/PhysRevLett.100.253601

    Article  ADS  Google Scholar 

  24. Spagnolo, N., Vitelli, C., Paternostro, M., Martini, F.D., Sciarrino, F.: Hybrid methods for witnessing entanglement in a microscopic–macroscopic system. Phys. Rev. A 84, 032102 (2011). https://doi.org/10.1103/PhysRevA.84.032102

    Article  ADS  Google Scholar 

  25. Song, Y.J., Kuang, L.M.: Controlling decoherence speed limit of a single impurity atom in a Bose–Einstein-condensate reservoir. Ann. Phys. (Berl.) 531, 1800423 (2019). https://doi.org/10.1002/andp.201800423

    Article  ADS  Google Scholar 

  26. Yuan, J.B., Kuang, L.M.: Quantum-discord amplification induced by a quantum phase transition via a cavity-Bose–Einstein-condensate system. Phys. Rev. A 87, 024101 (2013). https://doi.org/10.1103/PhysRevA.87.024101

    Article  ADS  Google Scholar 

  27. Tan, Q.S., Jin, G.R., Kuang, L.M.: Near-Heisenberg-limited parameter estimation precision by a dipolar-Bose-gas reservoir engineering. Phys. Rev. A 96, 063614 (2017). https://doi.org/10.1103/PhysRevA.96.063614

    Article  ADS  Google Scholar 

  28. Yuan, J.B., Xing, H.J., Kuang, L.M., Yi, S.: Quantum non-Markovian reservoirs of atomic condensates engineered via dipolar interactions. Phys. Rev. A 95, 033610 (2017). https://doi.org/10.1103/PhysRevA.95.033610

    Article  ADS  Google Scholar 

  29. Yuan, J.B., Lu, W.J., Song, Y.J., Kuang, L.M.: Single-impurity-induced Dicke quantum phase transition in a cavity-Bose–Einstein condensate. Sci. Rep. 7, 7404 (2017). https://doi.org/10.1038/s41598-017-07899-x

    Article  ADS  Google Scholar 

  30. Kuang, L.M., Zhou, L.: Generation of atom-photon entangled states in atomic Bose–Einstein condensate via electromagnetically induced transparency. Phys. Rev. A 68, 043606 (2003). https://doi.org/10.1103/PhysRevA.68.043606

    Article  ADS  Google Scholar 

  31. Kuang, L.M., Chen, Z.B., Pan, J.W.: Generation of entangled coherent states for distant Bose–Einstein condensates via electromagnetically induced transparency. Phys. Rev. A 76, 052324 (2007). https://doi.org/10.1103/PhysRevA.76.052324

    Article  ADS  Google Scholar 

  32. Peng, Z.H., Ding, J.H., Zhou, Y., Ying, L.L., Wang, Z., Zhou, L., Kuang, L.M., Liu, Y.X., Astafiev, O.V., Tsai, J.S.: Vacuum-induced Autler–Townes splitting in a superconducting artificial atom. Phys. Rev. A 97, 063809 (2018). https://doi.org/10.1103/PhysRevA.97.063809

    Article  ADS  Google Scholar 

  33. Ng, H.T., Bose, S.: Single-atom-aided probe of the decoherence of a Bose–Einstein condensate. Phys. Rev. A 78, 023610 (2008). https://doi.org/10.1103/PhysRevA.78.023610

    Article  ADS  Google Scholar 

  34. Balewski, J.B., Krupp, A.T., Gaj, A., Peter, D., Büchler, H.P., Löw, R., Hofferberth, S., Pfau, T.: Coupling a single electron to a Bose–Einstein condensate. Nature (London) 502, 664–667 (2013). https://doi.org/10.1038/nature12592

    Article  ADS  Google Scholar 

  35. Schmidt, R., Sadeghpour, H.R., Demler, E.: Mesoscopic Rydberg impurity in an atomic quantum gas. Phys. Rev. Lett. 116, 105302 (2016). https://doi.org/10.1103/PhysRevLett.116.105302

    Article  ADS  Google Scholar 

  36. Johnson, T.H., Yuan, Y., Bao, W., Clark, S.R., Foot, C., Jaksch, D.: Hubbard model for atomic impurities bound by the vortex lattice of a rotating Bose–Einstein condensate. Phys. Rev. Lett. 116, 240402 (2016). https://doi.org/10.1103/PhysRevLett.116.240402

    Article  ADS  Google Scholar 

  37. Li, Z., Kuang, L.M.: Controlling quantum coherence of a two-component Bose–Einstein condensate via an impurity atom. Quantum Inf. Process. 19, 188 (2020). https://doi.org/10.1007/s11128-020-02689-3

    Article  ADS  MathSciNet  Google Scholar 

  38. Rammohan, S., Tiwari, S., Mishra, A., Pendse, A., Chauhan, A.K., Nath, R., Eisfeld, A., Wüster, S.: Imaging the interface of a qubit and its quantum-many-body environment. Phys. Rev. A 104, L060202 (2021). https://doi.org/10.1103/PhysRevA.104.L060202

    Article  ADS  Google Scholar 

  39. Rammohan, S., Chauhan, A.K., Nath, R., Eisfeld, A., Wüster, S.: Tailoring Bose–Einstein-condensate environments for a Rydberg impurity. Phys. Rev. A 104, L060202 (2021). https://doi.org/10.1103/PhysRevA.103.063307

    Article  ADS  MathSciNet  Google Scholar 

  40. Heidemann, R., Raitzsch, U., Bendkowsky, V., Butscher, B., Löw, R., Pfau, T.: Rydberg excitation of Bose–Einstein condensates. Phys. Rev. Lett. 100, 033601 (2008). https://doi.org/10.1103/PhysRevLett.100.033601

    Article  ADS  Google Scholar 

  41. Camargo, F., Schmidt, R., Whalen, J.D., Ding, R., Woehl, G., Jr., Yoshida, S., Burgdörfer, J., Dunning, F.B., Sadeghpour, H.R., Demler, E., Killian, T.C.: Creation of Rydberg polarons in a Bose gas. Phys. Rev. Lett. 120, 083401 (2018). https://doi.org/10.1103/PhysRevLett.120.083401

    Article  ADS  Google Scholar 

  42. Mukherjee, R., Ates, C., Li, W., Wüster, S.: Phase-imprinting of Bose–Einstein condensates with Rydberg impurities. Phys. Rev. Lett. 115, 040401 (2015). https://doi.org/10.1103/PhysRevLett.115.040401

    Article  ADS  Google Scholar 

  43. Płodzień, M., Lochead, G., de Hond, J.N., van Druten, J., Kokkelmans, S.: Rydberg dressing of a one-dimensional Bose–Einstein condensate. Phys. Rev. A 95, 043606 (2017). https://doi.org/10.1103/PhysRevA.95.043606

    Article  ADS  Google Scholar 

  44. Wang, J., Gacesa, M., Côté, R.: Rydberg electrons in a Bose–Einstein condensate. Phys. Rev. Lett. 114, 243003 (2015). https://doi.org/10.1103/PhysRevLett.114.243003

    Article  ADS  Google Scholar 

  45. Vogt, T., Viteau, M., Chotia, A., Zhao, J., Comparat, D., Pillet, P.: Electric-field induced dipole blockade with Rydberg atoms. Phys. Rev. Lett. 99, 073002 (2007). https://doi.org/10.1103/PhysRevLett.99.073002

    Article  ADS  Google Scholar 

  46. Büchler, H.P., Micheli, A., Zoller, P.: Three-body interactions with cold polar molecules. Nat. Phys. 3, 726–731 (2007). https://doi.org/10.1038/nphys678

    Article  Google Scholar 

  47. Timmermans, E., Tommasini, P., Hussein, M., Kerman, A.: Feshbach resonances in atomic Bose–Einstein condensates. Phys. Rep. 315, 199–230 (1999). https://doi.org/10.1016/S0370-1573(99)00025-3

    Article  ADS  Google Scholar 

  48. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008). https://doi.org/10.1103/RevModPhys.80.885

    Article  ADS  Google Scholar 

  49. Smith, M.S.: Editorial: hybridizing quantum physics and engineering. Phys. Rev. Lett. 117, 100001 (2016). https://doi.org/10.1103/PhysRevLett.117.100001

    Article  ADS  Google Scholar 

  50. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984). https://doi.org/10.1098/rspa.1984.0023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987). https://doi.org/10.1103/PhysRevLett.58.1593

    Article  ADS  MathSciNet  Google Scholar 

  52. Anandan, J., Aharonov, Y.: Geometric quantum phase and angles. Phys. Rev. D 38, 1863 (1988). https://doi.org/10.1103/PhysRevD.38.1863

    Article  ADS  MathSciNet  Google Scholar 

  53. Samuel, J., Bhandari, R.: General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339 (1988). https://doi.org/10.1103/PhysRevLett.60.2339

    Article  ADS  MathSciNet  Google Scholar 

  54. Uhlmann, A.: Parallel transport and quantum holonomy along density operators. Rep. Math. Phys. 24, 229 (1986). https://doi.org/10.1016/0034-4877(86)90055-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Uhlmann, A.: A gauge field governing parallel transport along mixed states. Lett. Math. Phys. 21, 229–240 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  56. Sjöqvist, E., Pati, A.K., Ekert, A., Anandan, J.S., Ericsson, M., Oi, D.K.L., Vedral, V.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845 (2000). https://doi.org/10.1103/PhysRevLett.85.2845

    Article  ADS  Google Scholar 

  57. Singh, K., Tong, D.M., Basu, K.J., Chen, L., Du, J.F.: Geometric phases for nondegenerate and degenerate mixed states. Phys. Rev. A 67, 032106 (2003). https://doi.org/10.1103/PhysRevA.67.032106

    Article  ADS  Google Scholar 

  58. Tong, D.M., Sjöqvist, E., Kwek, L.C., Oh, C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93, 080405 (2004). https://doi.org/10.1103/PhysRevLett.93.080405

    Article  ADS  Google Scholar 

  59. Leek, P.J., Fink, J.M., Blais, A., Bianchetti, R., Göppl, M., Gambetta, J.M., Schuster, D.I., Frunzio, L., Schoelkopf, R.J., Wallraff, A.: Observation of Berry’s phase in a solid-state qubit. Science 318, 1889–1892 (2007). https://doi.org/10.1126/science.1149858

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Carollo, A., Fuentes-Guridi, I.M., Santos, F., Vedral, V.: Geometric phase in open systems. Phys. Rev. Lett. 90, 160402 (2003). https://doi.org/10.1103/PhysRevLett.90.160402

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Ericsson, M., Pati, A.K., Sjöqvist, E., Brannlund, J., Oi, D.K.L.: Mixed state geometric phases, entangled systems, and local unitary transformations. Phys. Rev. Lett. 91, 090405 (2003). https://doi.org/10.1103/PhysRevLett.91.090405

    Article  ADS  MathSciNet  Google Scholar 

  62. Marzlin, K.-P., Ghose, S., Sanders, B.C.: Geometric phase distributions for open quantum systems. Phys. Rev. Lett. 93, 260402 (2004). https://doi.org/10.1103/PhysRevLett.93.260402

    Article  ADS  Google Scholar 

  63. Kamleitner, I., Cresser, J.D., Sanders, B.C.: Geometric phase for an adiabatically evolving open quantum system. Phys. Rev. A 70, 044103 (2004). https://doi.org/10.1103/PhysRevA.70.044103

    Article  ADS  Google Scholar 

  64. Du, J., Zou, P., Shi, M., Kwek, L.C., Pan, J.-W., Oh, C.H., Ekert, A., Oi, D.K.L., Ericsson, M.: Observation of geometric phases for mixed states using NMR interferometry. Phys. Rev. Lett. 91, 100403 (2003). https://doi.org/10.1103/PhysRevLett.91.100403

    Article  ADS  Google Scholar 

  65. Ericsson, M., Achilles, D., Barreiro, J.T., Branning, D., Peters, N.A., Kwiat, P.G.: Measurement of geometric phase for mixed states using single photon interferometry. Phys. Rev. Lett. 94, 050401 (2005). https://doi.org/10.1103/PhysRevLett.94.050401

    Article  ADS  Google Scholar 

  66. Whitney, R.S., Makhlin, Y., Shnirman, A., Gefen, Y.: Geometric nature of the environment-induced Berry phase and geometric dephasing. Phys. Rev. Lett. 94, 070407 (2005). https://doi.org/10.1103/PhysRevLett.94.070407

    Article  ADS  MathSciNet  Google Scholar 

  67. Bassi, A., Ippoliti, E.: Geometric phase for open quantum systems and stochastic unravelings. Phys. Rev. A 73, 062104 (2006). https://doi.org/10.1103/PhysRevA.73.062104

    Article  ADS  MathSciNet  Google Scholar 

  68. Yi, X.X., Tong, D.M., Wang, L.C., Kwek, L.C., Oh, C.H.: Geometric phase in open systems: beyond the Markov approximation and weak-coupling limit. Phys. Rev. A 73, 052103 (2006). https://doi.org/10.1103/PhysRevA.73.052103

    Article  ADS  Google Scholar 

  69. Rezakhani, A.T., Zanardi, P.: General setting for a geometric phase of mixed states under an arbitrary nonunitary evolution. Phys. Rev. A 73, 012107 (2006). https://doi.org/10.1103/PhysRevA.73.012107

    Article  ADS  Google Scholar 

  70. Lombardo, F.C., Villar, P.I.: Geometric phases in open systems: a model to study how they are corrected by decoherence. Phys. Rev. A 74, 042311 (2006). https://doi.org/10.1103/PhysRevA.74.042311

    Article  ADS  Google Scholar 

  71. Sarandy, M.S., Lidar, D.A.: Abelian and non-Abelian geometric phases in adiabatic open quantum systems. Phys. Rev. A 73, 062101 (2006). https://doi.org/10.1103/PhysRevA.73.062101

    Article  ADS  Google Scholar 

  72. Goto, H., Ichimura, K.: Geometric phase for mixed states: formulation based on a connection on a vector bundle over a Grassmann manifold. Phys. Rev. A 76, 012120 (2007). https://doi.org/10.1103/PhysRevA.76.012120

    Article  ADS  Google Scholar 

  73. Moller, D., Madsen, L.B., Molmer, K.: Geometric phases in open tripod systems. Phys. Rev. A 77, 022306 (2008). https://doi.org/10.1103/PhysRevA.77.022306

    Article  ADS  Google Scholar 

  74. Buric, N., Radonjic, M.: Uniquely defined geometric phase of an open system. Phys. Rev. A 80, 014101 (2009). https://doi.org/10.1103/PhysRevA.80.014101

    Article  ADS  MathSciNet  Google Scholar 

  75. Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999). https://doi.org/10.1016/S0375-9601(99)00803-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Pachos, J., Zanardi, P., Rasetti, M.: Non-Abelian Berry connections for quantum computation. Phys. Rev. A 61, 010305(R) (1999). https://doi.org/10.1103/PhysRevA.61.010305

    Article  ADS  MathSciNet  Google Scholar 

  77. Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation with nuclear magnetic resonance. Nature (London) 403, 869–871 (2010). https://doi.org/10.1038/35002528

    Article  ADS  Google Scholar 

  78. Zu, C., Wang, W.-B., He, L., Zhang, W.-G., Dai, C.-Y., Wang, F., Duan, L.-M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature (London) 514, 72–75 (2014). https://doi.org/10.1038/nature13729

    Article  ADS  Google Scholar 

  79. Milman, P., Mosseri, R.: Topological phase for entangled two-qubit States. Phys. Rev. Lett. 90, 230403 (2003). https://doi.org/10.1103/PhysRevLett.90.230403

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Oxman, L.E., Khoury, A.Z.: Fractional topological phase for entangled qudits. Phys. Rev. Lett. 106, 240503 (2011). https://doi.org/10.1103/PhysRevLett.106.240503

    Article  ADS  Google Scholar 

  81. Li, Z., Han, Yu., Kuang, L.M.: Complementarity between micro–micro and micro–macro entanglement in a Bose–Einstein condensate with two Rydberg impurities. Commun. Theor. Phys. 72, 025101 (2020). https://doi.org/10.1088/1572-9494/ab6182

    Article  ADS  MATH  Google Scholar 

  82. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). https://doi.org/10.1103/PhysRevLett.80.2245

    Article  ADS  MATH  Google Scholar 

  83. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X’’ states. Quantum Inf. Comput. 7, 459–468 (2007). https://doi.org/10.5555/2011832.2011835

    Article  MathSciNet  MATH  Google Scholar 

  84. Werlang, T., Rigolin, G.: Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 81, 044101 (2010). https://doi.org/10.1103/PhysRevA.81.044101

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 1217050862, 11935006, 12147156, and 11775075, the STI Program of Hunan Province under Grant No. 2020RC4047, the China Postdoctoral Science Foundation under Grant No. 2021M701176, and the Science and Technology Innovation Program of Hunan Province under Grant No. 2021RC2078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-Man Kuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Jiao, YF., Jia, SP. et al. Micro–micro and micro–macro entanglement witnessing via the geometric phase in an impurity-doped Bose–Einstein condensate. Quantum Inf Process 21, 234 (2022). https://doi.org/10.1007/s11128-022-03567-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03567-w

Keywords

Navigation