Skip to main content
Log in

Secure communications based on sending-or-not-sending strategy

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, there are various schemes of quantum secure direct communications that have been studied. Most of these protocols commit themselves to accomplishing two goals: increasing the coding rate and expanding the range of quantum direct communications. Here in this study, a quantum secure communication protocol using the sending-or-not-sending strategy is proposed, which significantly enhances the communication distance. Numerical simulation results show that although the misalignment error \(e_{opt}\) increases as large as \(45\%\), the protocol can still achieve a distance of approximately 350 km. Although the long-distance single-photon inference is involved in decoy windows, it is not required to use this technology in signal windows established for secret message transmission. Moreover, the security of the protocol against collective attacks is analyzed based on Wyner’s wiretap channel theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code availability

Not applicable.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, IEEE, New York, p. 175 (1984)

  2. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)

    Article  ADS  Google Scholar 

  4. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  5. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  6. Lucamarini, M., Yuan, Z.-L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400 (2018)

    Article  ADS  Google Scholar 

  7. Kwek, L.C., Cao, L., Luo, W., et al.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021)

    Article  Google Scholar 

  8. Tang, G.-Z., Li, C.-Y., Wang, M.: Polarization discriminated time-bin phase-encoding measurement-device-independent quantum key distribution. Q. Eng. 3, e79 (2021)

    Google Scholar 

  9. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  10. Deng, F.-G., Long, G.-L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  11. Deng, F.-G., Long, G.-L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  12. Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.-L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  13. Long, G.-L., Deng, F.-G., Wang, C., Li, X.-H., Wen, K., Wang, W.-Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)

    Article  ADS  Google Scholar 

  14. Wang, C.: Quantum secure direct communication: intersection of communication and cryptography. Fundam. Res. 1, 91 (2021)

    Article  Google Scholar 

  15. Pan, D., Li, K., Ruan, D., et al.: Single-photon-memory two-step quantum secure direct communication relying on Einstein-Podolsky-Rosen pairs. IEEE Access 8, 121146–121161 (2020)

    Article  Google Scholar 

  16. You, X., Wang, C.-X., Huang, J., et al.: Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 64, 110301 (2021)

    Article  Google Scholar 

  17. Mi, S.-C., Wang, T.-J., Jin, G.-S., Wang, C.: High-capacity quantum secure direct communication with orbital angular momentum of [hotons. IEEE Photonics J. 7, 1 (2015)

    Article  Google Scholar 

  18. He, R., Ma, J.-G., Wu, J.-W.: A quantum secure direct communication protocol using entangled beam pairs. EPL Europhys. Lett. 127, 50006 (2019)

    Article  ADS  Google Scholar 

  19. Wu, X.-D., et al.: High-capacity measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19, 1 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhou, Z.-R., Sheng, Y.-B., Niu, P.-H., Yin, L.-G., Long, G.-L., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China. Phys. Mech. 63, 1 (2020)

    Google Scholar 

  21. Zhou, L., Sheng, Y.-B., Long, G.-L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12 (2020)

    Article  Google Scholar 

  22. Liu, L., Niu, J.-L., Fan, C.-R., Feng, X.-T., Wang, C.: High-dimensional measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19, 1 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Gupta, A., Behera, B. K., Panigrahi, P. K.: Measurement-device-independent QSDC protocol using Bell and GHZ states on quantum simulator. arXiv preprint arXiv:2007.01122 (2020)

  24. Hu, J.-Y., Bo, Yu., Jing, M.-Y., Xiao, L.-T., Jia, S.-T., Qin, G.-Q., Long, G.-L.: Experimental quantum secure direct communication with single photons. Light-Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  25. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  26. Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519 (2017)

    Article  Google Scholar 

  27. Qi, R., Sun, Z., Lin, Z., Niu, P., Hao, W., Song, L., Huang, Q., Gao, J., Yin, L., Long, G.-L.: Implementation and security analysis of practical quantum secure direct communication. Light-Sci. Appl. 8, 1 (2019)

    Article  Google Scholar 

  28. Pan, D., Lin, Z., Wu, J., et al.: Experimental free-space quantum secure direct communication and its security analysis. Photonics Res. 8, 1522–1531 (2020)

    Article  Google Scholar 

  29. Qi, Z.-T., Li, Y.-H., Huang, Y.-W., Feng, J., Zheng, Y.-L., Chen, X.-F.: A 15-user quantum secure direct communication network. Light-Sci. Appl. 10, 183 (2021)

    Article  ADS  Google Scholar 

  30. Zhang, H., Sun, Z., Qi, R., et al.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light-Sci. Appl. 11, 83 (2022)

    Article  ADS  Google Scholar 

  31. Sheng, Y.-B., Zhou, L., Long, G.-L.: One-step quantum secure direct communication. Sci. Bull. 67, 367 (2022)

    Article  Google Scholar 

  32. Biham, E., Mor, T.: Security of quantum cryptography against collective attacks. Phys. Rev. Lett. 78, 2256 (1997)

    Article  ADS  Google Scholar 

  33. Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018)

    Article  ADS  Google Scholar 

  34. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 9, 057901 (2003)

    Article  ADS  Google Scholar 

  35. Ma, X.-F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  36. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54, 1355 (1975)

    Article  MathSciNet  Google Scholar 

  37. Renner, R., Nicolas, G., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  38. Wu, J.-W., Lin, Z.-S., Yin, L.-G., Long, G.-L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1, e26 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China through Grants Nos. 62131002 and 62071448, and the Fundamental Research Funds for the Central Universities (BNU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Lu, B., Song, JY. et al. Secure communications based on sending-or-not-sending strategy. Quantum Inf Process 21, 250 (2022). https://doi.org/10.1007/s11128-022-03584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03584-9

Keywords

Navigation