Skip to main content
Log in

A novel quantum image watermarking scheme for tamper localization and self-recovery

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Image self-recovery watermarking is to embed the main content of an image into the image itself, which provides the image with the ability to recover tampered information. In this paper, image self-recovery watermarking is introduced into quantum watermarking, and a novel tamper localization and self-recovery watermarking scheme for quantum images is proposed. The presented scheme takes \(2\times 2\) sized non-overlapping image block as the basic unit for watermarking generation and embedding, tampering detection, and image recovery. The watermark qubits embedded into the carrier image include authentication qubits for tamper detection and recovery qubits for image recovery. Meanwhile, a two-level tamper detection and localization method is designed, which increases tamper detection accuracy. Based on the result of tamper detection, two separate image recovery models are devised to enhance the quality of recovered images. Dedicated quantum circuits for implementing the proposed quantum watermarking algorithm are given in this paper. The experimental results indicate that the novel scheme is effective and exhibits good image tamper detection and self-recovery performance against multiple malicious attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Steane, A.: Quantum computing. Rep. Prog. Phys. 61(2), 117 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Zoller, P., Beth, T., Binosi, D., Blatt, R., Briegel, H., Bruss, D., Calarco, T., Cirac, J.I., Deutsch, D., Eisert, J., et al.: Quantum information processing and communication. Eur. Phys. J. D Atom. Mol. Opt. Plasma Phys. 36(2), 203–228 (2005)

    Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

  4. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  6. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  7. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Chen, G.-L., Song, X.-H., Venegas-Andraca, S.E., El-Latif, A., Ahmed, A.: QIRHSI: novel quantum image representation based on HSI color space model. Quantum Inf. Process. 21(1), 1–31 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  9. Jiang, N., Wang, L., Wu, W.-Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  Google Scholar 

  10. Heidari, S., Vafaei, M., Houshmand, M., Tabatabaey-Mashadi, N.: A dual quantum image scrambling method. Quantum Inf. Process. 18(1), 1–23 (2019)

    Article  ADS  Google Scholar 

  11. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Li, P., Shi, T., Zhao, Y., Lu, A.: Design of threshold segmentation method for quantum image. Int. J. Theor. Phys. 59(2), 514–538 (2020)

    Article  MathSciNet  Google Scholar 

  13. Yuan, S., Venegas-Andraca, S.E., Wang, Y., Luo, Y., Mao, X.: Quantum image edge detection algorithm. Int. J. Theor. Phys. 58(9), 2823–2833 (2019)

    Article  MathSciNet  Google Scholar 

  14. Chetia, R., Boruah, S., Sahu, P.: Quantum image edge detection using improved Sobel mask based on NEQR. Quantum Inf. Process. 20(1), 1–25 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhou, R.-G., Luo, J., Liu, X., Zhu, C., Wei, L., Zhang, X.: A novel quantum image steganography scheme based on LSB. Int. J. Theor. Phys. 57(6), 1848–1863 (2018)

    Article  MathSciNet  Google Scholar 

  16. Qu, Z., Sun, H., Zheng, M.: An efficient quantum image steganography protocol based on improved EMD algorithm. Quantum Inf. Process. 20(2), 1–29 (2021)

    Article  MathSciNet  Google Scholar 

  17. Luo, G., Zhou, R.-G., Luo, J., Hu, W., Zhou, Y., Ian, H.: Adaptive LSB quantum watermarking method using tri-way pixel value differencing. Quantum Inf. Process. 18(2), 1–20 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hu, W., Zhou, R.-G., Li, Y.: Quantum watermarking based on neighbor mean interpolation and LSB steganography algorithms. Int. J. Theor. Phys. 58(7), 2134–2157 (2019)

    Article  MathSciNet  Google Scholar 

  19. Iliyasu, A., Le, P., Dong, F., Hirota, K.: Restricted geometric transformations and their applications for quantum image watermarking and authentication. In: Proceedings of the 10th Asian Conference on Quantum Information Science (AQIS 2010), pp. 212–214 (2010)

  20. Song, X.-H., Wang, S., Liu, S., El-Latif, A., Ahmed, A., Niu, X.-M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Song, X., Wang, S., Abd El-Latif, A.A., Niu, X.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)

    Article  Google Scholar 

  22. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  Google Scholar 

  23. Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55(10), 4205–4218 (2016)

    Article  Google Scholar 

  24. Zhou, R.-G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16(9), 1–21 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Luo, G., Zhou, R.-G., Hu, W., Luo, J., Liu, X., Ian, H.: Enhanced least significant qubit watermarking scheme for quantum images. Quantum Inf. Process. 17(11), 1–19 (2018)

    Article  ADS  Google Scholar 

  26. Sarreshtedari, S., Akhaee, M.A.: A source-channel coding approach to digital image protection and self-recovery. IEEE Trans. Image Process. 24(7), 2266–2277 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Tong, X., Liu, Y., Zhang, M., Chen, Y.: A novel chaos-based fragile watermarking for image tampering detection and self-recovery. Signal Process. Image Commun. 28(3), 301–308 (2013)

    Article  Google Scholar 

  28. Van Schyndel, R.G., Tirkel, A.Z., Osborne, C.F.: A digital watermark. In: Proceedings of 1st International Conference on Image Processing, vol. 2, pp. 86–90 (1994). IEEE

  29. Hu, W.-W., Zhou, R.-G., Liu, X.-A., Luo, J., Luo, G.-F.: Quantum image steganography algorithm based on modified exploiting modification direction embedding. Quantum Inf. Process. 19(5), 1–28 (2020)

    Article  MathSciNet  Google Scholar 

  30. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  ADS  Google Scholar 

  31. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. American Association of Physics Teachers (2002)

Download references

Acknowledgements

This work is supported by MOE (Ministry of Education in China) Project of Humanities and Social Sciences (Project No. 18YJAZH110), National Natural Science Foundation of China (No. 62171264) and Shandong Provincial Natural Science Foundations (No. ZR202102220198), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Mei Yang.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MX., Yang, HM., Jiang, DH. et al. A novel quantum image watermarking scheme for tamper localization and self-recovery. Quantum Inf Process 21, 277 (2022). https://doi.org/10.1007/s11128-022-03619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03619-1

Keywords

Navigation