Skip to main content
Log in

Purification for hybrid logical qubit entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Hybrid logical qubit entangled state (HLES) that consists of both polarization part and coherent state part has drawn much attention and been applied in many quantum information protocols. However, the HLES is inevitable to suffer from environmental noise and may degrade to a mixed state. In this paper, we present a hybrid logical qubit entanglement purification protocol (HLEPP) that can distill one copy of high-quality HLES from two same low-quality copies. This HLEPP can directly purify the bit-flip errors occurring in the polarization part, the coherent state part, and the logical qubit, respectively. In addition, this HLEPP can also work in the photon loss condition. This protocol only requires linear optical elements, so that it is feasible in current experimental technology. Our work may have potential applications in future hybrid entanglement-based quantum information protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors declare the disclosure of interests that are directly or indirectly related to the work submitted for publication.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  3. Yan, Z.H., Qin, J.L., Qin, Z.Z., Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Generation of non-classical states of light and their application in deterministic quantum teleportation. Fundam. Res. 1, 43–49 (2021)

    Article  Google Scholar 

  4. Pandey, R.K., Prakash, R., Prakash, H.: High success standard quantum teleportation using entangled coherent state and two-level atoms in cavities. Quantum Inf. Process. 20, 322 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  5. Quan, Q., Zhao, M.J., Fei, S.M., Fan, H., Yang, W.L., Wang, T.J., Long, G.L.: Two-copy quantum teleportation based on GHZ measurement. Quantum Inf. Process. 19, 205 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  7. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  8. Wang, S., Wang, Z., Cui, G., Shi, S., Shang, R., Fan, L., Li, W., Wei, Z., Gu, Y.: Fast black-box quantum state preparation based on linear combination of unitaries. Quantum Inf. Process. 20, 270 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144km. Nat. Phys. 3, 481–486 (2007)

    Article  Google Scholar 

  11. Zhang, C.Y., Zheng, Z.J.: Entanglement-based quantum key distribution with untrusted third party. Quantum Inf. Process. 20, 146 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  12. Kwek, L.C., Cao, L., Luo, W., Wang, Y.X., Sun, S.H., Wang, X.B., Liu, A.Q.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021)

    Article  Google Scholar 

  13. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  14. Simon, C., De Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H., Gisin, N.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  15. Yan, P.S., Zhou, L., Zhong, W., Sheng, Y.B.: A survey on advances of quantum repeater. EPL 136, 14001 (2021)

    Article  ADS  Google Scholar 

  16. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  17. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  18. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  19. He, R., Ma, J.G., Wu, J.: A quantum secure direct communication protocol using entangled beam pairs. EPL 127, 50006 (2019)

    Article  ADS  Google Scholar 

  20. Wu, J., Lin, Z., Yin, L., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1, e26 (2019)

    Article  Google Scholar 

  21. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)

    Article  Google Scholar 

  22. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)

    Article  ADS  Google Scholar 

  23. Liu, L., Niu, J.L., Fan, C.R., Feng, X.T., Wang, C.: High-dimensional measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19, 404 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Pan, D., Lin, Z., Wu, J., Zhang, H., Sun, Z., Ruan, D., Yin, L., Long, G.L.: Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 8, 1522 (2020)

    Article  Google Scholar 

  25. Yang, L., Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Quantum secure direct communication with entanglement source and single-photon measurement. Sci. China Phys. Mech. Astron. 63, 110311 (2020)

    Article  ADS  Google Scholar 

  26. Wang, C.: Quantum secure direct communication: intersection of communication and cryptography. Fundam. Res. 1, 91–92 (2021)

    Article  Google Scholar 

  27. Qi, Z., Li, Y., Huang, Y., Feng, J., Zheng, Y., Chen, X.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021)

    Article  ADS  Google Scholar 

  28. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67, 367–374 (2022)

    Article  Google Scholar 

  29. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65, 250311 (2022)

    Article  ADS  Google Scholar 

  30. Pang, J.Y., Chen, J.W.: On the renormalization of entanglement entropy. AAPPS Bull. 31, 28 (2021)

    Article  ADS  Google Scholar 

  31. van Loock, P.: Optical hybrid approaches to quantum information. Laser Photon. Rev. 5, 167–200 (2011)

    Article  ADS  Google Scholar 

  32. Jeong, H., Zavatta, A., Kang, M., Lee, S.W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nat. Photon. 8, 564–569 (2014)

    Article  ADS  Google Scholar 

  33. Morin, O., Huang, K., Liu, J.L., Le, J.H., Fabre, C., Laurat, L.: Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photon. 8, 570–574 (2014)

    Article  ADS  Google Scholar 

  34. Andersen, U.L., Neergaard-Nielsen, J.S., van Loock, P., Furusawa, A.: Hybrid discrete- and continuous-variable quantum information. Nat. Phys. 11, 713–719 (2015)

    Article  Google Scholar 

  35. Lvovsky, A.I., Raymer, M.G.: Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299–332 (2009)

    Article  ADS  Google Scholar 

  36. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998)

    Article  ADS  Google Scholar 

  37. Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)

    Article  ADS  Google Scholar 

  38. Zhang, M., Dou, Y., Huang, Y., Jiang, X.Q., Feng, Y.: Improved information reconciliation with systematic polar codes for continuous variable quantum key distribution. Quantum Inf. Process. 20, 327 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  39. Peng, Q., Guo, Y., Liao, Q., Ruan, X.: Satellite-to-submarine quantum communication based on measurement-device-independent continuous-variable quantum key distribution. Quantum Inf. Process. 21, 61 (2022)

    Article  ADS  Google Scholar 

  40. Light, J.C., Hamilton, I.P., Lill, J.V.: Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys. 82, 1400–1409 (1985)

    Article  ADS  Google Scholar 

  41. Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  Google Scholar 

  42. Wallquist, M., Hammerer, K., Rabl, P., Lukin, M., Zoller, P.: Hybrid quantum devices and quantum engineering. Phys. Scr. T137, 014001 (2009)

    Article  ADS  Google Scholar 

  43. van Loock, P., Munro, W.J., Nemoto, K., Spiller, T.P., Ladd, T.D., Braunstein, S.L., Milburn, G.J.: Hybrid quantum computation in quantum optics. Phys. Rev. A 78, 022303 (2008)

    Article  ADS  Google Scholar 

  44. Omkar, S., Teo, Y.S., Jeong, H.: Resource-efficient topological fault-tolerant quantum computation with hybrid entanglement of light. Phys. Rev. Lett. 125, 060501 (2020)

    Article  ADS  Google Scholar 

  45. Jing, B., Wang, X.J., Yu, Y., Sun, P.F., Jiang, Y., Yang, S.J., Jiang, W.H., Luo, X.Y., Zhang, J., Jiang, X., Bao, X.H., Pan, J.W.: Entanglement of three quantum memories via interference of three single photons. Nat. Photon. 13, 210–213 (2019)

    Article  ADS  Google Scholar 

  46. Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015)

    Article  ADS  Google Scholar 

  47. Cattaneo, M., Paris, M.G.A., Olivares, S.: Hybrid quantum key distribution using coherent states and photon-number-resolving detectors. Phys. Rev. A 98, 012333 (2018)

    Article  ADS  Google Scholar 

  48. van Loock, P., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006)

    Article  Google Scholar 

  49. Bergmann, M., van Loock, P.: Hybrid quantum repeater for qudits. Phys. Rev. A 99, 032349 (2019)

    Article  ADS  Google Scholar 

  50. Munro, W.J., Van Meter, R., Louis, S.G.R., Nemoto, K.: High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008)

    Article  ADS  Google Scholar 

  51. Sychev, D.V., Ulanov, A.E., Tiunov, E.S., Pushkina, A.A., Kuzhamuratov, A., Novikov, V., Lvovsky, A.I.: Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Commun. 9, 3672 (2018)

    Article  ADS  Google Scholar 

  52. Ulanov, A.E., Sychev, D., Pushkina, A.A., Fedorov, I.A., Lvovsky, A.I.: Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett. 118, 160501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  53. Omkar, S., Teo, Y.S., Lee, S.W., Jeong, H.: Highly photon-loss-tolerant quantum computing using hybrid qubits. Phys. Rev. A 103, 032602 (2021)

    Article  ADS  Google Scholar 

  54. Gambetta, J.M., Chow, J.M., Steffen, M.: Building logical qubits in a superconducting quantum computing system. NPJ Quantum Inf. 3, 2 (2017)

    Article  ADS  Google Scholar 

  55. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  56. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  57. Pan, J.W., Simon, C., Brukner, Č, Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  58. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003)

    Article  ADS  Google Scholar 

  59. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  60. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  61. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  62. Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)

    Article  ADS  Google Scholar 

  63. Zhang, H., Liu, Q., Xu, X.S., Xiong, J., Alsaedi, A., Hayat, T., Deng, F.G.: Polarization entanglement purification of nonlocal microwave photons based on the cross-Kerr effect in circuit QED. Phys. Rev. A 96, 052330 (2017)

    Article  ADS  Google Scholar 

  64. Wallnöfer, J., Dür, W.: Measurement-based quantum communication with resource states generated by entanglement purification. Phys. Rev. A 95, 012303 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  65. Wang, G.Y., Li, T., Ai, Q., Alsaedi, A., Hayat, T., Deng, F.G.: Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems. Phys. Rev. Appl. 10, 054058 (2018)

    Article  ADS  Google Scholar 

  66. Miguel-Ramiro, J., Dür, W.: Efficient entanglement purification protocols for d-level systems. Phys. Rev. A 98, 042309 (2018)

    Article  ADS  Google Scholar 

  67. Zhou, L., Zhang, S.S., Zhong, W., Sheng, Y.B.: Multi-copy nested entanglement purification for quantum repeaters. Ann. Phys. 412, 168042 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  68. Wang, G.Y., Long, G.L.: Entanglement purification for memory nodes in a quantum network. Sci. China Phys. Mech. Astron. 63, 220311 (2020)

    Article  ADS  Google Scholar 

  69. Zhou, L., Zhong, W., Sheng, Y.B.: Purification of the residual entanglement. Opt. Express 28, 2291–2301 (2020)

    Article  ADS  Google Scholar 

  70. Krastanov, S., Albert, V.V., Jiang, L.: Optimized entanglement purification. Quantum 3, 123 (2019)

    Article  Google Scholar 

  71. Yan, P.S., Zhou, L., Zhong, W., Sheng, Y.B.: Feasible time-bin entanglement purification based on sum-frequency generation. Opt. Express 29, 571–583 (2021)

    Article  ADS  Google Scholar 

  72. Hu, X.M., Huang, C.X., Sheng, Y.B., Zhou, L., Liu, B.H., Guo, Y., Zhang, C., Xing, W.B., Huang, Y.F., Li, C.F., Guo, G.C.: Long-distance entanglement purification for quantum communication. Phys. Rev. Lett. 126, 010503 (2021)

    Article  ADS  Google Scholar 

  73. Riera-Sàbat, F., Sekatski, P., Pirker, A., Dür, W.: Entanglement-assisted entanglement purification. Phys. Rev. Lett. 127, 040502 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  74. Ecker, S., Sohr, P., Bulla, L., Huber, M., Bohmann, M., Ursin, R.: Experimental single-copy entanglement distillation. Phys. Rev. Lett. 127, 040506 (2021)

    Article  ADS  Google Scholar 

  75. Ecker, S., Sohr, P., Bulla, L., Ursin, R., Bohmann, M.: Remotely establishing polarization entanglement over noisy polarization channels. Phys. Rev. Appl. 17, 034009 (2022)

    Article  ADS  Google Scholar 

  76. Huang, C.X., Hu, X.M., Liu, B.H., Zhou, L., Sheng, Y.B., Li, C.F., Guo, G.C.: Experimental one-step deterministic polarization entanglement purification. Sci. Bull. 67, 593–597 (2022)

    Article  Google Scholar 

  77. Yan, P.S., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-based entanglement purification for entangled coherent states. Front. Phys. 17, 21501 (2022)

    Article  ADS  Google Scholar 

  78. Yan, P.S., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-based logical qubit entanglement purification. Phys. Rev. A 105, 062418 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  79. Parker, S., Bose, S., Plenio, M.B.: Entanglement quantification and purification in continuous-variable systems. Phys. Rev. A 61, 032305 (2000)

    Article  ADS  Google Scholar 

  80. Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Entanglement purification of Gaussian continuous variable quantum states. Phys. Rev. Lett. 84, 4002–4005 (2000)

    Article  ADS  MATH  Google Scholar 

  81. Rebic, S., Mancini, S., Morigi, G., Vitali, D.: Continuous-variable entanglement purification with atomic systems. J. Opt. Soc. Am. B 27, A198–A207 (2010)

    Article  ADS  MATH  Google Scholar 

  82. Fiurášek, J., Marek, P., Filip, R., Schnabel, R.: Experimentally feasible purification of continuous-variable entanglement. Phys. Rev. A 75, 050302 (2007)

    Article  ADS  Google Scholar 

  83. Jeong, K., Lim, Y.: Purification of Gaussian maximally mixed states. Phys. Lett. A 380, 3607–3611 (2016)

    Article  ADS  Google Scholar 

  84. Sheng, Y.B., Zhou, L., Long, G.L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)

    Article  ADS  Google Scholar 

  85. Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)

    Article  ADS  Google Scholar 

  86. Zhou, L., Sheng, Y.B.: Polarization entanglement purification for concatenated Greenberger–Horne–Zeilinger state. Ann. Phys. 385, 10–35 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: Purification of the concatenated Greenberger–Horne–Zeilinger state with linear optics. Quantum Inf. Process. 17, 255 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. van Enk, S., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)

    Article  ADS  Google Scholar 

  89. van Loock, P., Lütkenhaus, N., Munro, W.J., Nemoto, K.: Quantum repeaters using coherent-state communication. Phys. Rev. A 78, 062319 (2008)

    Article  ADS  Google Scholar 

  90. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  91. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  92. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  93. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  94. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11974189 and 12175106) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX20-0818).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, CC., Zhou, L., Zhong, W. et al. Purification for hybrid logical qubit entanglement. Quantum Inf Process 21, 300 (2022). https://doi.org/10.1007/s11128-022-03646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03646-y

Keywords

Navigation