Skip to main content

Advertisement

Log in

Multiport quantum routing with four quantum dots placed at the junctions of ladder-type plasmonic waveguide

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We have proposed a new multichannel scheme of multiport quantum routing for single plasmons (SPs) with four quantum dots placed at the junctions of ladder-type plasmonic waveguides (PWs), two of which are infinite and the others are the finite silver nanowires. We investigated theoretically the routing properties of the proposed system for the incident SPs via the real-space approach. Our results show that in such a coupled system, the incident SPs can be routed by controlling the parameters, such as the detuning between the incident frequency of SPs and the transition frequencies of QDs, the coupling strengths between the QDs and PWs, and the spacing between QDs. We found that a complete transfer rate and half-transfer rates as well as quarter-output for each port could be realized by suitable adjusting the parameters. Our multichannel scheme for routing of SPs could be utilized for realizing quantum devices, such as quantum routers, quantum switches, quantum beam splitters and quantum directional couplers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and material considered in this paper are transparent.

Code availability

Authors have used Mathematica10.0 as software applications.

References

  1. Kimble, H.J.: The quantum internet. Nature (London) 453, 1023–1031 (2008)

    Article  ADS  Google Scholar 

  2. Chang, D.E., Sorensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nano-scale surface plasmons. Nat. Phys. 3, 807–812 (2007)

    Article  Google Scholar 

  3. Shen, J.-T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev A 79, 023837 (2009)

    Article  ADS  Google Scholar 

  4. Cheng, M.T., Ma, X.S., Zhang, J.Y., Wang, B.: Single photon transport in two waveguides chirally coupled by a quantum emitter. Opt. Expr. 24(17), 19988–19993 (2016)

    Article  ADS  Google Scholar 

  5. Yan, G.A., Cai, Q.Y., Chen, A.X.: Information-holding quantum router of single photons using natural atom. Eur. Phys. J. D 70, 93 (2016)

    Article  ADS  Google Scholar 

  6. Ko, M.-C., Kim, N.-C., Choe, H.: A single plasmon router based on the V-type three-level quantum dot sandwiched between two plasmonic waveguides. Phys. Scr. 94, 125605 (2019)

    Article  ADS  Google Scholar 

  7. Bao, X.-X., Guo, G.-F., Tan, L.: Quantum router modulated by the dipole-dipole interaction in a X-shaped coupled cavity array. Eur. Phys. J. D 73, 133 (2019)

    Article  ADS  Google Scholar 

  8. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  9. Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 103604 (2013)

    Article  ADS  Google Scholar 

  10. Lu, J., Wang, Z.H., Zhou, L.: T-shaped single-photon router. Opt. Expr. 23(18), 22955 (2015)

    Article  ADS  Google Scholar 

  11. Yang, X., Hou, J.-J., Wu, C.: Single-photon routing for a L-shaped channel. Int. J. Theor. Phys. 57, 602–608 (2018)

    Article  MATH  Google Scholar 

  12. Huang, J.-S., Wang, J.-W., Wang, Y., Li, Y.-L., Huang, Y.-W.: Control of single-photon routing in a T-shaped waveguide by another atom. Quantum Inf. Process. 17, 78 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Huang, J.-S., Wang, J.-W., Li, Y.-L., Wang, Y., Huang, Y.-W.: Tunable quantum routing via asymmetric intercavity couplings. Quantum Inform. Process. 18, 59 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Shen, J.T., Fan, S.: Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95(21), 213001 (2005)

    Article  ADS  Google Scholar 

  15. Kim, N.-C., Li, J.-B., Yang, Z.J., Hao, Z.H., Wang, Q.Q.: Switching of a single propagating plasmon by two quantum dots system. Appl. Phys. Lett. 97, 061110 (2010)

    Article  ADS  Google Scholar 

  16. Kim, N.-C., Ko, M.C., Choe, S.I., Hao, Z.H., Zhou, L., Li, J.B., Im, S.J., Ko, Y.H., Jo, C.G., Wang, Q.Q.: Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle semiconductor quantum dot system coupled to a plasmonic waveguide. Nanotechnology 27, 465703 (2016)

    Article  ADS  Google Scholar 

  17. Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009)

    Article  ADS  Google Scholar 

  18. Gonzalez-Ballestero, C., Moreno, E., Garcia-Vidal, F.J., Gonzalez-Tudela, A.: Nonreciprocal few photon routing schemes based on chiral waveguide–emitter couplings. Phys. Rev. A 94(6), 063817 (2016)

    Article  ADS  Google Scholar 

  19. Shomroni, I., Rosenblum, S., Lovsky, Y., Bechler, O., Guendelman, G., Dayan, B.: All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903 (2014)

    Article  ADS  Google Scholar 

  20. Li, X., Zhang, W.-Z., Xiong, B., Zhou, L.: Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci. Rep. 6, 39343 (2016)

    Article  ADS  Google Scholar 

  21. Cao, C., Duan, Y.-W., Chen, X., Zhang, R., Wang, T.-J., Wang, C.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Expr. 25, 16931 (2017)

    Article  ADS  Google Scholar 

  22. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  23. Atwater, H.A.: The promise of plasmonics. Sci. Am. 296, 56–63 (2007)

    Article  Google Scholar 

  24. Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D.: Nature 450, 402–406 (2007)

    Article  ADS  Google Scholar 

  25. Chang, D.E., Sørensen, A.S., Hemmer, P.R., Lukin, M.D.: Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006)

    Article  ADS  Google Scholar 

  26. Chance, R.R., Prock, A., Silbey, R.: Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978)

    Google Scholar 

  27. Wei, H., Hongxing, Xu.: Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits. Nanophotonics 1, 155–169 (2012)

    Article  ADS  Google Scholar 

  28. Knight, M.W., Grady, N.K., Bardhan, R., Hao, F., Nordlander, P., Halas, N.J.: Nanoparticle-mediated coupling of light into a nanowire. Nano Lett 7, 2346–2350 (2007)

    Article  ADS  Google Scholar 

  29. Wang, W.H., Yang, Q., Fan, F.R., Xu, H.X., Wang, Z.L.: Light propagation in curved silver nanowire plasmonic waveguides. Nano Lett 11, 1603–1608 (2011)

    Article  ADS  Google Scholar 

  30. Siampour, H., Kumar, S., Bozhevolnyi, S.I.: Nanofabrication of plasmonic circuits containing single photon sources. ACS Photonics 4, 1879–1884 (2017)

    Article  Google Scholar 

  31. Kumar, S., Kristiansen, N.I., Huck, A., Andersen, U.L.: Generation and controlled routing of single plasmons on a chip. Nano Lett. 14, 663–669 (2014)

    Article  ADS  Google Scholar 

  32. Jiang, C., Chen, B., Zhu, K.D.: Demonstration of a single-photon router with a cavity electromechanical system. J. Appl. Phys. 112, 033113 (2012)

    Article  ADS  Google Scholar 

  33. Lemr, K., Bartkiewicz, K., Cernoch, A., Soubusta, J.: Resource-efficient linear-optical quantum router. Phys. Rev. A 87, 062333 (2013)

    Article  ADS  Google Scholar 

  34. Yan, W.B., Liu, B., Zhou, L., Fan, H.: All-optical router at single-photon level by interference. Europhys. Lett. 111, 64005 (2015)

    Article  ADS  Google Scholar 

  35. Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 101, 083601 (2009)

    Article  ADS  Google Scholar 

  36. Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)

    Article  ADS  Google Scholar 

  37. Kim, N.-C., Ko, M.-C., Ryom, J.-S., Choe, H., Choe, I.-H., Ri, S.-R., Kim, S.-G.: Single plasmon router with two quantum dots side coupled to two plasmonic waveguides with a junction. Quantum Infor Process (2021). https://doi.org/10.1007/s11128-020-02884-2

    Article  Google Scholar 

  38. Li, X.-M., Wei, L.F.: Ideal photonic absorption, emission, and routings in chiral waveguides. Opt. Commun. 425, 13–18 (2018)

    Article  ADS  Google Scholar 

  39. Ko, M.-C., Kim, N.-C., Choe, H., Ri, S.-R., Ryom, J.-S., Ri, C.-W., Kim, U.-H.: Feasible surface plasmon routing based on the self-assembled InGaAs/GaAs semiconductor quantum dot located between two silver metallic waveguides. Plasmonics (2019). https://doi.org/10.1007/s11468-019-01022-8

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Program on Key Science Research of Democratic People’s Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

NCK is the project manager. He designed the model and checked the accuracy of calculations. CMK conceived the idea and performed the theoretical and numerical calculations. He also analyzed the results and contributed to preparation of the manuscript. MCK and JSR checked the correctness of the calculations and contributed to preparation of the manuscript. GYR, GMR and YJK contributed to preparation of the manuscript.

Corresponding author

Correspondence to Nam-Chol Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The submitted work is original and has not been published elsewhere in any form or language (partially or in full).

Consent to participate

All authors consent to participate.

Consent for publishing

All authors consent to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NC., Kim, CM., Ko, MC. et al. Multiport quantum routing with four quantum dots placed at the junctions of ladder-type plasmonic waveguide. Quantum Inf Process 22, 21 (2023). https://doi.org/10.1007/s11128-022-03722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03722-3

Keywords