Skip to main content
Log in

The entanglement criteria via a broad class of symmetric informationally complete measurements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The detection of entanglement is a basic problem in quantum information theory. Our goal in this work is to study the quantum separability problem with respect to a broad class of informationally completed symmetric measurements, including general symmetrical information complete POVM and mutually unbiased measurements. Furthermore, several separability criteria are presented in bipartite and many-body quantum systems, respectively. Some detailed examples are given and showed that our criteria are more powerful and comprehensive than the existing ones in entanglement detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Gühne, O.: Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 92, 117903 (2004)

    ADS  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  4. Kalev, A., Bae, J.: Optimal approximate transpose map via quantum designs and its applications to entanglement detection. Phys. Rev. A 87, 062314 (2013)

    ADS  Google Scholar 

  5. Gharibian, S.: Strong NP-hardness of the quantum separability problem. Quantum Inf. Comput. 10, 343 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Gurvits, L.: Classical complexity and quantum entanglement. J. Comput. Syst. Sci. 69, 448 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Gurvits, L.: In Proceedings of the Thirty-Fifth ACM Symposium on Theory of Computing, p. 10. ACM Press, New York (2003)

  8. Bae, J.: Designing quantum information processing via structural physical approximation. Rep. Prog. Phys. 80, 104001 (2017)

    ADS  MathSciNet  Google Scholar 

  9. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Rudolph, O.: Some properties of the computable cross-norm criterion for separability. Phys. Rev. A 67, 032312 (2003)

    ADS  MathSciNet  Google Scholar 

  13. Chen, K., Wu, L.A.: The generalized partial transposition criterion for separability of multipartite quantum states. Phys. Lett. A 306, 14 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Chen, K., Wu, L.A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed quantum states: linear contractions and permutation criteria. Open Syst. Inf. Dyn. 13, 103 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Albeverio, S., Chen, K., Fei, S.M.: Generalized reduction criterion for separability of quantum states. Phys. Rev. A 68, 062313 (2003)

    ADS  MathSciNet  Google Scholar 

  17. Chen, K., Wu, L.A.: Test for entanglement using physically observable witness operators and positive maps. Phys. Rev. A 69, 022312 (2004)

    ADS  Google Scholar 

  18. Wocjan, P., Horodecki, M.: Characterization of combinatorially independent permutation separability criteria. Open Syst. Inf. Dyn. 12, 331 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Gühne, O., Hyllus, P., Gittsovich, O., Eísert, J.: Covariance matrices and the separability problem. Phys. Rev. Lett. 99, 130504 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Vicente, J.D.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Vicente, J.D.: Further results on entanglement detection and quantification from the correlation matrix criterion. J. Phys. A Math. Theor. 41, 065309 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Li, M., Wang, J., Fei, S.M., Li-Jost, X.: Quantum separability criteria for arbitrary-dimensional multipartite states. Phys. Rev. A 89, 022325 (2014)

    ADS  Google Scholar 

  23. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201 (1991)

    ADS  MathSciNet  Google Scholar 

  24. Yu, S., Pan, J.W., Chen, Z.B., Zhang, Y.D.: Comprehensive test of entanglement for two-level systems via the indeterminacy relationship. Phys. Rev. Lett. 91, 217903 (2003)

    ADS  Google Scholar 

  25. Li, M., Fei, S.M.: Gisin’s theorem for arbitrary dimensional multipartite states. Phys. Rev. Lett. 104, 240502 (2010)

    ADS  MathSciNet  Google Scholar 

  26. Zhao, M.J., Ma, T., Fei, S.M., Wang, Z.X.: Inequalities detecting quantum entanglement for \(2\otimes d\) systems. Phys. Rev. A 83, 052120 (2011)

    ADS  Google Scholar 

  27. Spengler, C., Huber, M., Brierley, S., Adaktylos, T., Hiesmayr, B.C.: Entanglement detection via mutually unbiased bases. Phys. Rev. A 86, 022311 (2012)

    ADS  Google Scholar 

  28. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363 (1989)

    ADS  MathSciNet  Google Scholar 

  29. Chen, B., Ma, T., Fei, S.M.: Entanglement detection using mutually unbiased measurements. Phys. Rev. A 89, 064302 (2014)

    ADS  Google Scholar 

  30. Liu, L., Gao, T., Yan, F.: Separability criteria via sets of mutually unbiased measurements. Sci. Rep. 5, 13138 (2015)

    ADS  Google Scholar 

  31. Kalev, A., Gour, G.: Mutually unbiased measurements in finite dimensions. New J. Phys. 16, 053038 (2014)

    ADS  MATH  Google Scholar 

  32. Lawrence, J.: Mutually unbiased bases and trinary operator sets for N qutrits. Phys. Rev. A 70, 012302 (2004)

    ADS  MathSciNet  Google Scholar 

  33. Romero, J.L., Björk, G., Klimov, A.B., SánchezSoto, L.L.: Structure of the sets of mutually unbiased bases for N qubits. Phys. Rev. A 72, 062310 (2005)

    ADS  Google Scholar 

  34. Wiesniak, M., Paterek, T., Zeilinger, A.: Entanglement in mutually unbiased bases. New J. Phys. 13, 053047 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Durt, T., Englert, B.G., Bengtsson, I., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535 (2010)

    MATH  Google Scholar 

  36. Alber, G., Charnes, C.: Mutually unbiased bases: a group and graph theoretical approach. Phys. Scr. 94, 014007 (2018)

    ADS  Google Scholar 

  37. Brierley, S., Weigert, S.: Constructing mutually unbiased bases in dimension six. Phys. Rev. A 79, 052316 (2009)

    ADS  MathSciNet  Google Scholar 

  38. Chen, L., Yu, L.: Mutually unbiased bases in dimension six containing a product-vector basis. Quantum Inf. Proc. 17, 198 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  39. McNulty, D., Weigert, S.: All mutually unbiased product bases in dimension 6. J. Phys. A 45, 135307 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  40. McNulty, D., Weigert, S.: On the impossibility to extend triples of mutually unbiased product bases in dimension six. Int. J. Quantum Inf. 10, 1250056 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Désignolle, S., Skrzypczyk, P., Fröwis, F., Brunner, N.: Quantifying measurement incompatibility of mutually unbiased bases. Phys. Rev. Lett. 122, 050402 (2019)

    ADS  Google Scholar 

  42. Czartowski, J., Goyeneche, D., Zyczkowski, K.: Entanglement properties of multipartite informationally complete quantum measurements. J. Phys. A Math. Theor. 51, 305302 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Shen, S.Q., Li, M., Li-Jost, X., Fei, S.M.: Improved separability criteria via some classes of measurements. Quantum Inf. Process. 17, 111 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Shang, J.W., Asadian, A., Zhu, H.J.: Enhanced entanglement criterion via symmetric informationally complete measurements. Phys. Rev. A 98, 022309 (2018)

    ADS  Google Scholar 

  45. Fuchs, C.A., Hoang, M.C., Stacey, M.B.C.: The SIC question: history and state of play. Axioms 6, 21 (2017)

    Google Scholar 

  46. Scott, A.J., Grassl, M.: Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys. 51, 042203 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Appleby, D.M.: Symmetric informationally complete measurements of arbitrary rank. Opt. Spectrosc. 103, 416 (2007)

    ADS  Google Scholar 

  48. Gour, G., Kalev, A.: Construction of all general symmetric informationally complete measurements. J. Phys. A Math. Theor. 47, 335302 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Chen, B., Li, T., Fei, S.M.: General SIC measurement-based entanglement detection. Quantum Inf. Process. 14, 2281 (2015)

    ADS  MATH  Google Scholar 

  50. Xi, Y., Zheng, Z.J., Zhu, C.J.: Entanglement detection via general SIC-POVMs. Quantum Inf. Process. 15, 5119 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Bae, J., Hiesmayr, B.C., McNulty, D.: Linking entanglement detection and state tomography via quantum 2-designs. New J. Phys. 21, 013012 (2019)

    ADS  Google Scholar 

  52. Katarzyna, S.: All class of informationally complete symmetric measurements in finite dimensions. arXiv:2111.08101 (2021)

  53. Bertlmann, R.A., Durstberger, K., Hiesmayr, B.C., Krammer, P.: Optimal entanglement witnesses for qubits and qutrits. Phys. Rev. A 72, 052331 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11671284), Sichuan Science and Technology Program (Grant No. 2020YFG0290), the Central Guidance on Local Science and Technology Development Fund of Sichuan Province (22ZYZYTS0064), the Chengdu Key Research and Development Support Program (Grants No. 2021-YF09-0016-GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L. The entanglement criteria via a broad class of symmetric informationally complete measurements. Quantum Inf Process 22, 57 (2023). https://doi.org/10.1007/s11128-022-03811-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03811-3

Keywords

Navigation