Skip to main content
Log in

Polarization and orbital angular momentum coupling for high-dimensional measurement-device-independent quantum key distribution protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) provides an effective approach to remove all detector side channel attacks. MDI-QKD only contains one bit of information for a photon in two-dimensional space, thus performing poorly in information capacity. In contrast, the amount of information increases logarithmically in high-dimensional quantum key distribution, and multi-degree-of-freedom coupling is a feasible option. In this paper, we propose a high-dimensional measurement-device-independent quantum key distribution protocol based on polarization and orbital angular momentum coupling. We illustrate the feasibility with protocol details, deduce and simulate the secure key rate and quantum bit error rate (QBER). The simulations show that the key generation rate and the upper bound of QBER are higher compared to the standard two-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. IEEE, New York (1984)

  3. Lo, H.-K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18(2), 133–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, S., Chen, W., Yin, Z.-Q., He, D.-Y., Hui, C., Hao, P.-L., Fan-Yuan, G.-J., Wang, C., Zhang, L.-J., Kuang, J., et al.: Practical gigahertz quantum key distribution robust against channel disturbance. Opt. Lett. 43(9), 2030–2033 (2018)

    Article  ADS  Google Scholar 

  5. Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Zhu, Y.-G., et al.: Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16(2), 154–161 (2022)

    Article  ADS  Google Scholar 

  6. Zhao, Y., Qi, B., Lo, H.-K.: Quantum key distribution with an unknown and untrusted source. Phys. Rev. A 77(5), 052327 (2008)

    Article  ADS  Google Scholar 

  7. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  MATH  ADS  Google Scholar 

  8. Peng, X., Jiang, H., Xu, B., Ma, X., Guo, H.: Experimental quantum-key distribution with an untrusted source. Opt. Lett. 33(18), 2077–2079 (2008)

    Article  ADS  Google Scholar 

  9. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330 (2000)

    Article  MATH  ADS  Google Scholar 

  10. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  11. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  12. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4(10), 686–689 (2010)

    Article  ADS  Google Scholar 

  13. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)

    Article  ADS  Google Scholar 

  14. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 1–6 (2011)

    Article  Google Scholar 

  15. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  16. Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54(4), 2651 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  17. Inamori, H.: Security of practical time-reversed epr quantum key distribution. Algorithmica 34(4), 340–365 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yin, H.-L., Cao, W.-F., Fu, Y., Tang, Y.-L., Liu, Y., Chen, T.-Y., Chen, Z.-B.: Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions. Opt. Lett. 39(18), 5451–5454 (2014)

    Article  ADS  Google Scholar 

  19. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)

    Article  ADS  Google Scholar 

  20. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., et al.: Advances in quantum cryptography. Adv. Opt. Photon. 12(4), 1012–1236 (2020)

    Article  Google Scholar 

  21. Cozzolino, D., Da Lio, B., Bacco, D., Oxenløwe, L.K.: High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2(12), 1900038 (2019)

    Article  Google Scholar 

  22. Sit, A., Bouchard, F., Fickler, R., Gagnon-Bischoff, J., Larocque, H., Heshami, K., Elser, D., Peuntinger, C., Günthner, K., Heim, B., et al.: High-dimensional intracity quantum cryptography with structured photons. Optica 4(9), 1006–1010 (2017)

    Article  ADS  Google Scholar 

  23. Islam, N.T., Lim, C.C.W., Cahall, C., Kim, J., Gauthier, D.J.: Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv. 3(11), 1701491 (2017)

    Article  ADS  Google Scholar 

  24. Ding, Y., Bacco, D., Dalgaard, K., Cai, X., Zhou, X., Rottwitt, K., Oxenløwe, L.K.: High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inform. 3(1), 1–7 (2017)

    Article  Google Scholar 

  25. Zhou, Y., Mirhosseini, M., Oliver, S., Zhao, J., Rafsanjani, S.M.H., Lavery, M.P., Willner, A.E., Boyd, R.W.: Using all transverse degrees of freedom in quantum communications based on a generic mode sorter. Opt. Express 27(7), 10383–10394 (2019)

    Article  ADS  Google Scholar 

  26. Krenn, M., Handsteiner, J., Fink, M., Fickler, R., Ursin, R., Malik, M., Zeilinger, A.: Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016)

    Article  ADS  Google Scholar 

  27. Xavier, G. B., Lima, G.: Quantum information processing with space-division multiplexing optical fibres. Commun. Phys. 3(1), 9 (2020)

  28. Fangxiang, W., Wei, C.: High-dimensional quantum key distribution based on orbital angular momentum photons: a review. Chin. J. Quantum Electron. 39(1), 64 (2022)

    Google Scholar 

  29. Xu, F., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  30. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72(1), 012332 (2005)

    Article  ADS  Google Scholar 

  31. Li, D.-D., Zhao, M.-S., Li, Z., Tang, Y.-L., Dai, Y.-Q., Tang, S.-B., Zhao, Y.: High dimensional quantum key distribution with temporal and polarization hybrid encoding. Opt. Fiber Technol. 68, 102828 (2022)

    Article  Google Scholar 

  32. Wang, F.-X., Chen, W., Yin, Z.-Q., Wang, S., Guo, G.-C., Han, Z.-F.: Characterizing high-quality high-dimensional quantum key distribution by state mapping between different degrees of freedom. Phys. Rev. Appl. 11(2), 024070 (2019)

    Article  ADS  Google Scholar 

  33. Cariñe, J., Cañas, G., Skrzypczyk, P., Šupić, I., Guerrero, N., Garcia, T., Pereira, L., Prosser, M., Xavier, G.B., Delgado, A., et al.: Multi-core fiber integrated multi-port beam splitters for quantum information processing. Optica 7(5), 542–550 (2020)

    Article  ADS  Google Scholar 

  34. Bouchard, F., Sit, A., Zhang, Y., Fickler, R., Miatto, F.M., Yao, Y., Sciarrino, F., Karimi, E.: Two-photon interference: the Hong–Ou–Mandel effect. Rep. Prog. Phys. 84(1), 012402 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  35. Ou, Z., Hong, C., Mandel, L.: Relation between input and output states for a beam splitter. Opt. Commun. 63(2), 118–122 (1987)

    Article  ADS  Google Scholar 

  36. Wang, X.-B., Peng, C.-Z., Zhang, J., Yang, L., Pan, J.-W.: General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A 77(4), 042311 (2008)

    Article  ADS  Google Scholar 

  37. Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89(2), 022307 (2014)

    Article  ADS  Google Scholar 

  38. Wang, X.-B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87(1), 012320 (2013)

    Article  ADS  Google Scholar 

  39. Sun, S.-H., Gao, M., Li, C.-Y., Liang, L.-M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87(5), 052329 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the state Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) No. IPOC2021ZT10, BUPT Innovation and Entrepreneurship Support Program (Grant No. 2022-YC-T051), the National Natural Science Foundation of China Grant No. 11904333, and the Fundamental Research Funds for the Central Universities No. 2019XD-A02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqiang Ma.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Analysis of Bell state \(\vert {\Psi }_i^\pm \rangle \) and response results

In this case, we choose \(\vert {\Psi }_1^\pm \rangle \) and \(\vert {\Psi }_2^\pm \rangle \) as examples for analysis. The communicating parties send \(\left| 0 \right\rangle \) and \(\left| 1 \right\rangle \); \(\left| 2 \right\rangle \) and \(\left| 3 \right\rangle \) in Z-basis, \(\left| \varphi _0\right\rangle \) and \(\left| \varphi _1\right\rangle \); \(\left| \varphi _2\right\rangle \) and \(\left| \varphi _3\right\rangle \) in X-basis. The expression of the output state is as follows:

$$\begin{aligned}{} & {} \begin{aligned} \left| \psi \right\rangle _{01}&=\frac{1}{\sqrt{2}} \left[ \left| 0 \right\rangle _{1} \otimes \left( {i\left| n \right\rangle _{1}} +\left| s \right\rangle _{1}\right) \right] \otimes \frac{1}{\sqrt{2}}\left[ \left| 1 \right\rangle _{2} \otimes \left( {i\left| n \right\rangle _{2}} +\left| s \right\rangle _{2}\right) \right] \\&=\frac{1}{2} \left( \left| 0 \right\rangle _{1} \otimes \left| 1 \right\rangle _{2} \right) \otimes \left( {i\left| n \right\rangle _{1}\left| n \right\rangle _{2} - \left| n \right\rangle _{1}\left| s \right\rangle _{2} + \left| n \right\rangle _{2}\left| s \right\rangle _{1} + i\left| s \right\rangle _{1}\left| s \right\rangle _{2}} \right) \\ \left| \psi \right\rangle _{23}&=\frac{1}{\sqrt{2}}\left[ \left| 2 \right\rangle _{1} \otimes \left( {i\left| n \right\rangle _{1}} +\left| s \right\rangle _{1}\right) \right] \otimes \frac{1}{\sqrt{2}}\left[ \left| 3 \right\rangle _{2} \otimes \left( {i\left| n \right\rangle _{2}} +\left| s \right\rangle _{2}\right) \right] \\&=\frac{1}{2} \left( \left| 2 \right\rangle _{1} \otimes \left| 3 \right\rangle _{2} \right) \otimes \left( {i\left| n \right\rangle _{1}\left| n \right\rangle _{2} - \left| n \right\rangle _{1}\left| s \right\rangle _{2} + \left| n \right\rangle _{2}\left| s \right\rangle _{1} + i\left| s \right\rangle _{1}\left| s \right\rangle _{2}} \right) \end{aligned} \end{aligned}$$
(A1)
$$\begin{aligned}{} & {} \begin{aligned} \left| \psi \right\rangle _{\phi _{0}\phi _{1}}&=\frac{1}{\sqrt{2}}\left[ \left| \varphi _0\right\rangle _{1} \otimes \left( {i\left| n \right\rangle _{1}} +\left| s \right\rangle _{1}\right) \right] \otimes \frac{1}{\sqrt{2}}\left[ \left| \varphi _1\right\rangle _{2} \otimes \left( {i\left| n \right\rangle _{2}} +\left| s \right\rangle _{2}\right) \right] \\&=\frac{1}{4} \left( \left| 0 \right\rangle _{1} \otimes \left| 1 \right\rangle _{2} + \left| 2 \right\rangle _{1}\otimes \left| 3 \right\rangle _{2} + \left| 0 \right\rangle _{2}\otimes \left| 1 \right\rangle _{1} + \left| 2 \right\rangle _{2}\otimes \left| 3 \right\rangle _{1} \right) \\&\otimes \left( {i\left| n \right\rangle _{1}\left| n \right\rangle _{2} - \left| n \right\rangle _{1}\left| s \right\rangle _{2} + \left| n \right\rangle _{2}\left| s \right\rangle _{1} + i\left| s \right\rangle _{1}\left| s \right\rangle _{2}} \right) \\ \left| \psi \right\rangle _{\phi _{2}\phi _{3}}&=\frac{1}{\sqrt{2}}\left[ \left| \varphi _2\right\rangle _{1} \otimes \left( {i\left| n \right\rangle _{3}} +\left| s \right\rangle _{1}\right) \right] \otimes \frac{1}{\sqrt{2}}\left[ \left| \varphi _1\right\rangle _{2} \otimes \left( {i\left| n \right\rangle _{2}} +\left| s \right\rangle _{2}\right) \right] \\&=\frac{1}{4} \left( \left| 1 \right\rangle _{1} \otimes \left| 0 \right\rangle _{2} + \left| 3 \right\rangle _{1}\otimes \left| 2 \right\rangle _{2} + \left| 1 \right\rangle _{2}\otimes \left| 0 \right\rangle _{1} + \left| 3 \right\rangle _{2}\otimes \left| 2 \right\rangle _{1} \right) \\&\otimes \left( {i\left| n \right\rangle _{1}\left| n \right\rangle _{2} - \left| n \right\rangle _{1}\left| s \right\rangle _{2} + \left| n \right\rangle _{2}\left| s \right\rangle _{1} + i\left| s \right\rangle _{1}\left| s \right\rangle _{2}} \right) \end{aligned} \end{aligned}$$
(A2)

where the corner markers denote the choice of quantum state for Alice and Bob. Based on the above equations, the detectors click results of HD-MDI-QKD can be analyzed. This corresponds to detectors clicks for different terms as shown in Table 5. The quantum state collapses to the following Bell states:

$$\begin{aligned} \begin{aligned}&\left| H\right\rangle \left| l\right\rangle _{1} \otimes \left| H\right\rangle \left| -l\right\rangle _{2} + \left| H\right\rangle \left| -l\right\rangle _{1} \otimes \left| H\right\rangle \left| l\right\rangle _{2} + \left| V\right\rangle \left| l\right\rangle _{1} \otimes \left| V\right\rangle \left| -l\right\rangle _{2}\\&\quad + \left| V\right\rangle \left| -l\right\rangle _{1} \otimes \left| V\right\rangle \left| l\right\rangle _{2}\\&\left| H\right\rangle \left| l\right\rangle _{1} \otimes \left| H\right\rangle \left| -l\right\rangle _{2} + \left| H\right\rangle \left| -l\right\rangle _{1} \otimes \left| H\right\rangle \left| l\right\rangle _{2} - \left| V\right\rangle \left| l\right\rangle _{1} \otimes \left| V\right\rangle \left| -l\right\rangle _{2}\\&\quad - \left| V\right\rangle \left| -l\right\rangle _{1} \otimes \left| V\right\rangle \left| l\right\rangle _{2}\\&\left| H\right\rangle \left| l\right\rangle _{1} \otimes \left| H\right\rangle \left| -l\right\rangle _{2} - \left| H\right\rangle \left| -l\right\rangle _{1} \otimes \left| H\right\rangle \left| l\right\rangle _{2} + \left| V\right\rangle \left| l\right\rangle _{1} \otimes \left| V\right\rangle \left| -l\right\rangle _{2} \\&\quad - \left| V\right\rangle \left| -l\right\rangle _{1} \otimes \left| V\right\rangle \left| l\right\rangle _{2}\\&\left| H\right\rangle \left| l\right\rangle _{1} \otimes \left| H\right\rangle \left| -l\right\rangle _{2} - \left| H\right\rangle \left| -l\right\rangle _{1} \otimes \left| H\right\rangle \left| l\right\rangle _{2} - \left| V\right\rangle \left| l\right\rangle _{1} \otimes \left| V\right\rangle \left| -l\right\rangle _{2} \\&\quad + \left| V\right\rangle \left| -l\right\rangle _{1} \otimes \left| V\right\rangle \left| l\right\rangle _{2} \end{aligned} \end{aligned}$$
(A3)
Table 5 Detector clicks for different terms

The former (later) two items correspond to \(\vert {\Psi }_1^\pm \rangle \) (\(\vert {\Psi }_2^\pm \rangle \)). Similarly, we can analyze other situations and collate the results to derive Table 1.

Appendix B: Detailed calculation of the secure key rate and QBER

According to the definition of \(q_{ij}^{\left| \alpha \right\rangle \otimes \left| \beta \right\rangle }\left( \mu _A\otimes \nu _B\right) \) in the text, the full expression of the gain and the bit error rate in Z basis are:

$$\begin{aligned}{} & {} \begin{aligned}&Q_{\mu _{A}\nu _{B}}^{Z}=\frac{1}{16} {\sum _{SUCC(i,j)}\begin{bmatrix} {q_{ij}^{{\vert 0\rangle } \otimes {\vert 0\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) + q_{ij}^{{\vert 0\rangle } \otimes {\vert 1\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) +}\\ \cdots \\ { + q_{ij}^{{\vert 3\rangle } \otimes {\vert 2\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) + q_{ij}^{{\vert 3\rangle } \otimes {\vert 3\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) } \\ \end{bmatrix}}\\&\quad = \frac{1}{16}{\sum _{SUCC(i,j)} \begin{bmatrix} {q_{ij}^{{\vert H\rangle }{\vert l\rangle } \otimes {\vert H\rangle }{\vert l\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) + q_{ij}^{{\vert H\rangle }{\vert l\rangle } \otimes {\vert H\rangle }{\vert {- l}\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) +}\\ \cdots \\ {+ q_{ij}^{{\vert V\rangle }{\vert {- l}\rangle } \otimes {\vert V\rangle }{\vert l\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) + q_{ij}^{{\vert V\rangle }{\vert {- l}\rangle } \otimes {\vert V\rangle }{\vert {- l}\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) } \\ \end{bmatrix}} \end{aligned} \end{aligned}$$
(B4)
$$\begin{aligned}{} & {} \begin{aligned}&E_{\mu _{A}\nu _{B}}^{Z} =\frac{1}{Q_{\mu _{A}\nu _{B}}^{Z}} \times \frac{1}{16}{\sum _{SUCC(i,j)}\begin{bmatrix} {q_{ij}^{{\vert 0\rangle } \otimes {\vert 0\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) + q_{ij}^{{\vert 1\rangle } \otimes {\vert 1\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) } \\ {q_{ij}^{{\vert 2\rangle } \otimes {\vert 2\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) + q_{ij}^{{\vert 3\rangle } \otimes {\vert 3\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) } \\ \end{bmatrix}} \\&\quad =\frac{1}{Q_{\mu _{A}\nu _{B}}^{Z}} \times \frac{1}{16} {\sum _{SUCC(i,j)}\begin{bmatrix} {q_{ij}^{{\vert H\rangle }{\vert l\rangle } \otimes {\vert H\rangle }{\vert l\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) + q_{ij}^{{\vert H\rangle }{\vert {- l}\rangle } \otimes {\vert H\rangle }{\vert {- l}\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) } \\ {q_{ij}^{{\vert V\rangle }{\vert l\rangle } \otimes {\vert V\rangle }{\vert l\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) + q_{ij}^{{\vert V\rangle }{\vert {- l}\rangle } \otimes {\vert V\rangle }{\vert {- l}\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) } \\ \end{bmatrix}} \end{aligned} \end{aligned}$$
(B5)

Similarly, we can deduce \(Q_{\mu _{A}\nu _{B}}^{X}\) and \(E_{\mu _{A}\nu _{B}}^{X}\) in X basis:

$$\begin{aligned}{} & {} \begin{aligned}&Q_{\mu _{A}\nu _{B}}^{X} = \frac{1}{16}{\sum _{SUCC(i,j)}\begin{bmatrix} {q_{ij}^{{\vert \varphi _{0}\rangle } \otimes {\vert \varphi _{0}\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) + q_{ij}^{{\vert \varphi _{0}\rangle } \otimes {\vert \varphi _{1}\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) +}\\ \cdots \\ { +q_{ij}^{{\vert \varphi _{3}\rangle } \otimes {\vert \varphi _{2}\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) + q_{ij}^{{\vert \varphi _{3}\rangle } \otimes {\vert \varphi _{3}\rangle }}\left( {\mu _{A} \otimes \nu _{B}} \right) } \\ \end{bmatrix}} \\&\quad =\frac{1}{16}{\sum _{SUCC(i,j)}\begin{bmatrix} {q_{ij}^{\frac{1}{2}{({{\vert + \rangle }{\vert l\rangle } + {\vert - \rangle }{\vert {- l}\rangle }})} \otimes {({{\vert + \rangle }{\vert l\rangle } + {\vert - \rangle }{\vert {- l}\rangle }})}}\left( {\mu _{A} \otimes \nu _{B}} \right) +}\\ {q_{ij}^{\frac{1}{2}{({{\vert + \rangle }{\vert l\rangle } + {\vert - \rangle }{\vert {- l}\rangle }})} \otimes {({{\vert - \rangle }{\vert l\rangle } + {\vert + \rangle }{\vert {- l}\rangle }})}}\left( {\mu _{A} \otimes \nu _{B}} \right) + } \\ {\cdots }\\ {+ q_{ij}^{\frac{1}{2}{({{\vert + \rangle }{\vert l\rangle } - {\vert - \rangle }{\vert {- l}\rangle }})} \otimes {({{\vert - \rangle }{\vert l\rangle } - {\vert + \rangle }{\vert {- l}\rangle }})}}\left( {\mu _{A} \otimes \nu _{B}} \right) }\\ {+q_{ij}^{\frac{1}{2}{({{\vert - \rangle }{\vert l\rangle } - {\vert + \rangle }{\vert {- l}\rangle }})} \otimes {({{\vert - \rangle }{\vert l\rangle } - {\vert + \rangle }{\vert {- l}\rangle }})}}\left( {\mu _{A} \otimes \nu _{B}} \right) } \\ \end{bmatrix}} \end{aligned} \end{aligned}$$
(B6)
$$\begin{aligned}{} & {} \begin{aligned}&E_{\mu _{A}\nu _{B}}^{X} =\frac{1}{Q_{\mu _{A}\nu _{B}}^{X}} \times \frac{1}{16}{\sum _{SUCC(i,j)}\begin{bmatrix} {q_{ij}^{\frac{1}{2}{({{\vert + \rangle }{\vert l\rangle } + {\vert - \rangle }{\vert {- l}\rangle }})} \otimes {({{\vert + \rangle }{\vert l\rangle } + {\vert - \rangle }{\vert {- l}\rangle }})}}\left( {\mu _{A} \otimes \nu _{B}} \right) +} \\ \cdots \\ {+ q_{ij}^{\frac{1}{2}{({{\vert - \rangle }{\vert l\rangle } - {\vert + \rangle }{\vert {- l}\rangle }})} \otimes {({{\vert - \rangle }{\vert l\rangle } - {\vert + \rangle }{\vert {- l}\rangle }})}}\left( {\mu _{A} \otimes \nu _{B}} \right) } \\ \end{bmatrix}} \\&\quad =\frac{1}{Q_{\mu _{A}\nu _{B}}^{X}} \times \frac{1}{16}{\sum _{SUCC(i,j)}\begin{bmatrix} {q_{ij}^{\frac{1}{2}{({{\vert + \rangle }{\vert l\rangle } + {\vert - \rangle }{\vert {- l}\rangle }})} \otimes {({{\vert + \rangle }{\vert l\rangle } + {\vert - \rangle }{\vert {- l}\rangle }})}}\left( {\mu _{A} \otimes \nu _{B}} \right) +} \\ \cdots \\ {+ q_{ij}^{\frac{1}{2}{({{\vert - \rangle }{\vert l\rangle } - {\vert + \rangle }{\vert {- l}\rangle }})} \otimes {({{\vert - \rangle }{\vert l\rangle } - {\vert + \rangle }{\vert {- l}\rangle }})}}\left( {\mu _{A} \otimes \nu _{B}} \right) } \\ \end{bmatrix}} \end{aligned} \end{aligned}$$
(B7)

In a polarization-only QKD, the actual probability of error resulting from the basis dependence defect will be:

$$\begin{aligned} E_{\mu _A\otimes \nu _B}^\omega =E_{\mu _A\otimes \nu _B}^\omega +E_d\left( 1-2E_{\mu _A\otimes \nu _B}^\omega \right) \end{aligned}$$
(B8)

where \(\omega \) means one of Z or X basis, \(E_d\) is the influence factor of the basis-dependent defect (calibration factor), it affects the key rate and communication distance. The measurement results are not influenced in case of reference system rotation when OAM state coding is used. In this case, \(E_d=0\) which makes the error probability lower than conventional MDI-QKD protocol under the same conditions and the key rate is improved correspondingly.

In the case of decoy state, we deform Eq. 7,

$$\begin{aligned} \begin{aligned} e^{\mu _i+\nu _j}Q_{\mu _i\nu _j}^\omega&=\sum _{n,m=0}^{\infty }\frac{\mu _i^n\nu _j^m}{n!m!}Y_{nm}^\omega \\&=\sum _{m=0}^{\infty }\frac{\nu _j^m}{m!}Y_{0m}^\omega +\mu _i\left( Y_{10}^\omega {+\nu _jY}_{11}^\omega +\sum _{m=2}^{\infty }\frac{\nu _j^m}{m!}Y_{1m}^\omega \right) \\&\quad +\sum _{m=2}^{\infty }\frac{\mu _i^n}{n!}\left( Y_{n0}^\omega {+\nu _jY}_{n1}^\omega +\sum _{m=2}^{\infty }\frac{\nu _j^m}{m!}Y_{nm}^\omega \right) \\&=e^{\nu _j}Q_{0\nu _j}^\omega +e^{\mu _i}Q_{\mu _i0}^\omega -Q_{00}^\omega +\mu _i\nu _jY_{11}^\omega +h\left( \mu _i,\nu _j\right) \end{aligned} \end{aligned}$$
(B9)

where

$$\begin{aligned} h\left( \mu _i,\nu _j\right) =\sum _{m=2}^{\infty }\frac{{\mu _i\nu }_j^m}{m!}Y_{1m}^\omega +\sum _{n=2}^{\infty }\frac{\mu _i^n\nu _j}{n!}Y_{n1}^\omega +\sum _{n,m=2}^{\infty }\frac{\mu _i^n\nu _j^m}{n!m!}Y_{nm}^\omega \end{aligned}$$
(B10)

Replacing \(\mu _i+\nu _j\) in Eq. B9 with the average photon number \(\mu _1\) and \(\nu _1\) of the signal state yields:

$$\begin{aligned}&e^{\mu _1+\nu _1}Q_{\mu _1\nu _1}^\omega -e^{\mu _2+\nu _2}Q_{\mu _2\nu _2}^\omega \nonumber \\&\quad =g_1+\left( \mu _1\nu _1-\mu _2\nu _2\right) Y_{11}^\omega +\sum _{m=2}^{\infty }\frac{{\mu _1\nu }_1^m-{\mu _2\nu }_2^m}{m!}Y_{1m}^\omega \nonumber \\&\qquad +\sum _{n=2}^{\infty }\frac{\mu _1^n\nu _1-\mu _2^n\nu _2}{n!}Y_{n1}^\omega +\sum _{n,m=2}^{\infty }\frac{\mu _1^n\nu _1^m-\mu _2^n\nu _2^m}{n!m!}Y_{nm}^\omega \nonumber \\&\quad \ge g_1+\left( \mu _1\nu _1-\mu _2\nu _2\right) Y_{11}^\omega +a\sum _{m=2}^{\infty }\frac{{\mu _1\nu }_1^m-{\mu _2\nu }_2^m}{m!}Y_{1m}^\omega \nonumber \\&\qquad +b\sum _{n=2}^{\infty }\frac{\mu _1^n\nu _1-\mu _2^n\nu _2}{n!}Y_{n1}^\omega +c\sum _{n,m=2}^{\infty }\frac{\mu _1^n\nu _1^m-\mu _2^n\nu _2^m}{n!m!}Y_{nm}^\omega \nonumber \\&\quad \ge g_1+\left( \mu _1\nu _1-\mu _2\nu _2\right) Y_{11}^\omega +\beta \left[ h\left( \mu _1,\nu _2\right) +h\left( \mu _2,\nu _1\right) \right] \nonumber \\&\quad =g_1+g_2+g_3-\left( \mu _2\nu _2-\mu _1\nu _1+\alpha \mu _1\nu _2+\beta \mu _2\nu _1\right) Y_{11}^\omega \end{aligned}$$
(B11)

In which \(\beta =min\left( a,b,c\right) \). The characters a,b and c are bounded as follows:

$$\begin{aligned}{} & {} \frac{{\mu _1\nu }_1^m-{\mu _2\nu }_2^m}{{\mu _1\nu }_2^m+{\mu _2\nu }_1^m}\ge \frac{{\mu _1\nu }_1^2-{\mu _2\nu }_2^2}{{\mu _1\nu }_2^2+{\mu _2\nu }_1^2}=a\ge 0 \end{aligned}$$
(B12)
$$\begin{aligned}{} & {} \frac{\mu _1^n\nu _1-\mu _2^n\nu _2}{\mu _1^n\nu _2+\mu _1^n\nu _2}\ge \frac{\mu _1^2\nu _1-\mu _2^2\nu _2}{\mu _1^2\nu _2+\mu _1^2\nu _2}=b\ge 0 \end{aligned}$$
(B13)
$$\begin{aligned}{} & {} \frac{\mu _1^n\nu _1^m-\mu _2^n\nu _2^m}{\mu _1^n\nu _2^m-\mu _1^n\nu _2^m}\ge \frac{\mu _1^2\nu _1^2-\mu _2^2\nu _2^2}{\mu _1^2\nu _2^2-\mu _1^2\nu _2^2}=c\ge 0 \end{aligned}$$
(B14)

The parameters \(g_1^\omega \),\(g_2^\omega \),and \(g_3^\omega \) are defined as:

$$\begin{aligned}{} & {} g_1^\omega =e^{\nu _1}Q_{0\nu _1}^\omega +e^{\mu _1}Q_{\mu _10}^\omega -e^{\nu _2}Q_{0\nu _2}^\omega +e^{\mu _2}Q_{\mu _20}^\omega \end{aligned}$$
(B15)
$$\begin{aligned}{} & {} g_2^\omega =\beta \left( e^{\mu _1+\nu _2}Q_{\mu _1\nu _2}^\omega -e^{\nu _2}Q_{0\nu _2}^\omega -e^{\mu _1}Q_{\mu _10}^\omega +Q_{00}^\omega \right) \end{aligned}$$
(B16)
$$\begin{aligned}{} & {} g_3^\omega =\beta \left( e^{\mu _2+\nu _1}Q_{\mu _2\nu _1}^\omega -e^{\nu _1}Q_{0\nu _1}^\omega -e^{\mu _2}Q_{\mu _20}^\omega +Q_{00}^\omega \right) \end{aligned}$$
(B17)
$$\begin{aligned}{} & {} Y_{11}^{\omega }\ge \frac{g_1^\omega +g_2^\omega +g_3^\omega -e^{\mu _1+\nu _1}Q_{\mu _1\nu _1}^\omega +e^{\mu _2+\nu _2}Q_{\mu _2\nu _2}^\omega }{\mu _2\nu _2-\mu _1\nu _1+\beta \mu _1\nu _2+\beta \mu _2\nu _1} \end{aligned}$$
(B18)

Similarly, deformation Eq. 8, we can obtain:

$$\begin{aligned} {e^{\mu _2+\nu _2}E}_{\mu _2\nu _2}^\omega Q_{\mu _2\nu _2}^\omega =g_4^\omega +{\mu _2\nu _2Y}_{11}^\omega e_{11}^\omega +h^\prime \left( \mu _2,\nu _2\right) \end{aligned}$$
(B19)

where,

$$\begin{aligned} g_4^\omega= & {} e^{\nu _2}Q_{0\nu _2}^\omega E_{0\nu _2}^\omega +e^{\mu _2}Q_{\mu _20}^\omega E_{\mu _20}^\omega -Q_{00}^\omega E_{00}^\omega \end{aligned}$$
(B20)
$$\begin{aligned} h^\prime \left( \mu _2,\nu _2\right)= & {} \sum _{m=2}^{\infty }\frac{{\mu _2\nu }_2^m}{m!}Y_{1m}^\omega e_{1m}^\omega +\sum _{n=2}^{\infty }\frac{\mu _2^n\nu _2}{n!}Y_{n1}^\omega e_{n1}^\omega +\sum _{n,m=2}^{\infty }\frac{\mu _i^n\nu _j^m}{n!m!}Y_{nm}^\omega e_{n1}^\omega \nonumber \\ \end{aligned}$$
(B21)

It is obvious that \(h^\prime \left( \mu _2,\nu _2\right) \ge 0\), replacing \(\mu _i+\nu _j\) in Eq. B19 with the average photon number \(\mu _2\) and \(\nu _2\) of the decoy state, we can derive:

$$\begin{aligned} e_{11}^{\omega }\le \frac{e^{\mu _2+\nu _2}Q_{\mu _2\nu _2}^\omega E_{\mu _2\nu _2}^\omega -g_4^\omega }{\mu _2\nu _2Y_{11}^\omega } \end{aligned}$$
(B22)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Sun, Z., Li, P. et al. Polarization and orbital angular momentum coupling for high-dimensional measurement-device-independent quantum key distribution protocol. Quantum Inf Process 22, 147 (2023). https://doi.org/10.1007/s11128-023-03886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03886-6

Keywords

Navigation