Skip to main content
Log in

One-particle loss detection of genuine multipartite entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study detection of genuine multipartite entanglement based on one-particle loss operator. We obtain a criterion on detecting genuine pure tripartite entanglement. The results are then generalized to arbitrary pure multipartite states. For mixed states by using the correlation tensors of the Bloch representation of density matrices, we obtain an effective criterion of arbitrary dimensional genuine tripartite entanglement. Detailed examples are given to show that our criterion is able to detect more genuine tripartite entanglement states than some existing criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gisin, N., Ribordy, G., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  4. Shimoni, Y., Shapira, D., Biham, O.: Entangled quantum states generated by Shor’s factoring algorithm. Phys. Rev. A 72, 062308 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hyllus, P.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  6. Ma, Z.H., Chen, Z.H., Chen, J.L., et al.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2011)

    Article  ADS  Google Scholar 

  7. Chen, Z.H., Ma, Z.H., Chen, J.L., et al.: Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85, 062320 (2012)

    Article  ADS  Google Scholar 

  8. Bancal, J.D., Gisin, N., Liang, Y.C., et al.: Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011)

    Article  ADS  Google Scholar 

  9. Li, M., Wang, J., Shen, S.Q., et al.: Detection and measure of genuine tripartite entanglement with partial transposition and realignment of density matrices. Sci. Rep. 7, 17274 (2018)

    Article  ADS  Google Scholar 

  10. Jebaratnam, C.: Detecting genuine multipartite entanglement in steering scenarios. Phys. Rev. A 93, 052311 (2016)

    Article  ADS  Google Scholar 

  11. Huber, M., Sengupta, R.: Witnessing genuine multipartite entanglement with positive maps. Phys. Rev. Lett. 113, 100501 (2014)

    Article  ADS  Google Scholar 

  12. Petreca, T.A., Cardoso, G., Devecchi, P.F., et al.: Genuine multipartite entanglement and quantum coherence in an electron-positron system: relativistic covariance. Phys. Rev. A 105, 032205 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  13. Vaishy, A., Mitra, S., Bhattacharya, S.: Detecting genuine multipartite entanglement in three-qubit systems with eternal non-Markovianity. J. Phys. A Math. Theor. 55, 225305 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Ali, M.: Dynamics of genuine multipartite entanglement under local non-Markovian dephasing. Phys. Lett. A 378, 2048 (2014)

    Article  ADS  MATH  Google Scholar 

  15. Zhao, H., Yang, Y., Jing, N., et al.: Detection of multipartite entanglement based on Heisenberg-Weyl representation of density matrices. Int. J. Theor. Phys. 61, 136 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhao, J.Y., Zhao, H., Jing, N., et al.: Detection of genuine multipartite entanglement in multipartite systems. Int. J. Theor. Phys. 58, 3181 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao, H., Liu, Y.Q., Jing, N., et al.: Detection of genuine tripartite entanglement based on Bloch representation of density matrices. Quantum. Inf. Process. 21, 116 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Zhao, H., Liu, Y.Q., Fei, S.M., et al.: Detection of genuine multipartite entanglement based on principal basis matrix representations. Laser. Phys. Lett. 19, 035205 (2022)

    Article  ADS  Google Scholar 

  19. Li, D.F.: Detection of genuine n-qubit entanglement via the proportionality of two vectors. Quantum Inf. Process. 18, 1–18 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, D.F.: Reducing the detection of genuine entanglement of n qubits to two qubits. Quantum Inf. Process. 20, 207 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. de Vicente, I.J.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Yang, L.M., Sun, B.Z., Chen, B., et al.: Quantum Fisher information-based detection of genuine tripartite entanglement. Quantum Inf. Process. 19, (2020) 10.1007/s11128-020-02766-7

  23. Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79, 012318 (2009)

    Article  ADS  Google Scholar 

  24. Shen, S.Q., Yu, J., Li, M., et al.: Improved separability criteria based on Bloch representation of density matrices. Sci. Rep. 6, 28850 (2016)

    Article  ADS  Google Scholar 

  25. Li, M., Jia, L.X., Wang, J., et al.: Measure and detection of genuine multipartite entanglement for tripartite systems. Phys. Rev. A 96, 052314 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under G.Nos. 12075159, 12126351, 12272011 and 12171044. Beijing Natural Science Foundation (G.No. Z190005), and the Academician Innovation Platform of Hainan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Hao, J., Fei, SM. et al. One-particle loss detection of genuine multipartite entanglement. Quantum Inf Process 22, 210 (2023). https://doi.org/10.1007/s11128-023-03916-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03916-3

Keywords

Navigation