Skip to main content
Log in

Sojourn Times in the M/PH/1 Processor Sharing Queue

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We give in this paper an algorithm to compute the sojourn time distribution in the processor sharing, single server queue with Poisson arrivals and phase type distributed service times. In a first step, we establish the differential system governing the conditional sojourn times probability distributions in this queue, given the number of customers in the different phases of the PH distribution at the arrival instant of a customer. This differential system is then solved by using a uniformization procedure and an exponential of matrix. The proposed algorithm precisely consists of computing this exponential with a controlled accuracy. This algorithm is then used in practical cases to investigate the impact of the variability of service times on sojourn times and the validity of the so-called reduced service rate (RSR) approximation, when service times in the different phases are highly dissymmetrical. For two-stage PH distributions, we give conjectures on the limiting behavior in terms of an M/M/1 PS queue and provide numerical illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Abate and W. Whitt, Numerical inversion of Laplace transforms of probability distributions, ORSA J. Comput. 7(1) (1995) 36–43.

    Google Scholar 

  2. R. Agrawal, A.M. Makowski, and P. Nain, On a reduced load equivalence for fluid queues under subexponentiality, Queueing Systems. Theory and Applications 33(1–3) (1999) 5–41.

    Article  Google Scholar 

  3. S. Asmussen, Applied Probability and Queues (J. Wiley and Sons, 1987).

  4. C. Barakat, P. Thiran, G. Iannaccone, C. Diot and P. Owezarski, Modeling internet backbone traffic at the flow level, IEEE Transactions on Signal Processing—Special Issue on Signal Processing in Networking 51(8) (2003) 2111–2124.

    Article  Google Scholar 

  5. S. Ben Fredj, T. Bonald, A. Proutiére, G. Régnié and J.W. Roberts, Statistical bandwidth sharing: a study of congestion at flow level, in: Proc. SIGCOMM 2001, (San Diego, CA, USA, Aug. 2001).

  6. S.C. Borst, O.J. Boxma, J.A. Morrison and R. Núñez-Queija, The equivalence between processor sharing and service in random order, Oper. Res. Lett 31 (2003) 254–262.

    Article  Google Scholar 

  7. S.C. Borst, O.J. Boxma, J.A. Morrison and R. Núñez-Queija, The equivalence between processor sharing and service in random order, Oper. Res. Lett 31 (2003) 254–262.

    Google Scholar 

  8. E.G. Coffman, R.R. Muntz and H. Trotter, Waiting time distributions for processor-sharing systems, J. ACM 17 (1970) 123–130.

    Article  Google Scholar 

  9. L. Flatto, The waiting time distribution for the random order service M/M/1 queue, Annals of Applied Probability 7 (1997) 382–409.

    Article  Google Scholar 

  10. F. Guillemin and J. Boyer, Analysis of the M/M/1 queue with processor sharing via spectral theory, Queueing Systems 39 (2001) 377–397.

    Article  Google Scholar 

  11. F. Guillemin, P. Robert and B. Zwart, Tail asymptotics for processor sharing queues, Annals of Applied Probability 36 (2004) 1–19.

    Google Scholar 

  12. P. Jelenković and P. Momçilović, Large deviation analysis of subexponential waiting time in an MG/1 PS queue (2001). http://comet.ctr.columbia.edu/petar/ps.pdf.Submitted.

  13. M. Yu. Kitaev, The M/G/1 processor-sharing model: Transient behavior, Queueing Systems 14 (1993) 239–273.

  14. M. Yu. Kitaev, The M/G/1 processor-sharing model: Transient behavior, Queueing Systems 14 (1993) 239–273.

    Google Scholar 

  15. J. Morrison, Response time for a processor-sharing system, SIAM J. Appl. Math. 45(1) (1985) 152–167.

    Article  Google Scholar 

  16. R. Núñez-Queija, Processor Sharing Models for Integrated Services Networks, PhD thesis, Eindhoven University of Technology (2000).

  17. T. Ott, The sojourn-time distribution in the M/G/1 queue with processor sharing, J. Appl. Prob. 21 (1984) 360–378.

    Google Scholar 

  18. F. Pollaczek, La loi d’attente des appels téléphoniques. C.R. Acad. Sci. 222 (1946) 353–355.

    Google Scholar 

  19. J. Riordan, Stochastic Service Systems (John Wiley and Sons, Inc., New York London, 1962).

    Google Scholar 

  20. J. Roberts and L. Massoulié, Bandwidth sharing and admission control for elastic traffic, in Proc. Infocom’99 (1998).

  21. J. Roberts and L. Massoulié, Bandwidth sharing and admission control for elastic traffic, in Proc. Infocom’99 (1998).

    Google Scholar 

  22. D. Starobinski and M. Sidi, Modeling and analysis of heavy-tailed distributions via classical teletraffic methods, Queueing Systems 36(1–3) (2000) 243–267.

    Article  MathSciNet  Google Scholar 

  23. J.L. van den Berg and O.J. Boxma, The M/G/1 queue with processor sharing and its relation to a feedback queue, Queueing Systems 9 (1991) 365-402.

    Article  Google Scholar 

  24. S.F. Yashkov, Processor sharing queues: some progress in analysis, Queueing System 2 (1987) 1–17.

    Article  Google Scholar 

  25. A.P. Zwart and O.J. Boxma, Sojourn time asymptotics in the M/G/1 processor sharing queue, Queueing Systems Theory Appl. 35(1–4) (2000) 141–166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sericola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sericola, B., Guillemin, F. & Boyer, J. Sojourn Times in the M/PH/1 Processor Sharing Queue. Queueing Syst 50, 109–130 (2005). https://doi.org/10.1007/s11134-005-0372-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-005-0372-1

Navigation