Skip to main content
Log in

Stability and delay of distributed scheduling algorithms for networks of conflicting queues

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

This paper explains recent results on distributed algorithms for networks of conflicting queues. At any given time, only specific subsets of queues can be served simultaneously. The challenge is to select the subsets in a distributed way to stabilize the queues whenever the arrival rates are feasible.

One key idea is to formulate the subset selection as an optimization problem where the objective function includes the entropy of the distribution of the selected subsets. The dual algorithm for solving this optimization problem provides a distributed scheduling algorithm that requires only local queue-length information. The algorithm is based on the CSMA (Carrier Sense Multiple Access) protocol in wireless networks.

We also explain recent results, some of them unpublished so far, on the delay properties of these algorithms. In particular, we present a framework for queuing stability under bounded CSMA parameters, and show how the expected queue lengths depend on the throughput region to be supported. When the arrival rates are within a fraction of the capacity region, queue lengths that are polynomial (or even logarithmic) in the number of queues can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4

Notes

  1. \(\tilde{\mathbf{r}}\) is an “attraction point” of r in Algorithm 1, as shown later.

  2. In the case of continuous-time CSMA, condition (16) should be changed to

    $$\frac{1}{T}\int_{0}^{T}\bigl\|\mu_{\sigma_{0},\tau}(\mathbf{r})-\pi(\mathbf{r})\bigr\|_{TV}\le \delta/(4K\cdot D),\quad \forall\sigma_{0}\in\varOmega.$$
  3. Strictly speaking, if the state space of r[j] is uncountable (e.g., if we use continuous-time CSMA), extra steps are needed. We omit the details here since a similar situation has been addressed in [25].

References

  1. Tassiulas, L., Ephremides, A.: Stability properties of constrained queuing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Autom. Control 37(12), 1936–1948 (1992)

    Article  Google Scholar 

  2. Neely, M.J.: Stochastic Network Optimization with Application to Communication and Queueing Systems. Synthesis Lectures on Communication Networks. Morgan & Claypool Publishers, San Rafael (2010)

    Google Scholar 

  3. Chaporkar, P., Kar, K., Sarkar, S.: Throughput guarantees in maximal scheduling in wireless networks. In: The 43rd Annual Allerton Conference on Communication, Control and Computing, Sept. (2005)

    Google Scholar 

  4. Wu, X., Srikant, R.: Scheduling efficiency of distributed greedy scheduling algorithms in wireless networks. In: IEEE INFOCOM 2006, Barcelona, Spain, Apr. (2006)

    Google Scholar 

  5. Dimakis, A., Walrand, J.: Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits. Adv. Appl. Probab. 38(2), 505–521 (2006)

    Article  Google Scholar 

  6. Joo, C., Lin, X., Shroff, N.: Understanding the capacity region of the greedy maximal scheduling algorithm in multi-hop wireless networks. In: IEEE INFOCOM 2008, Phoenix, Arizona, Apr. (2008)

    Google Scholar 

  7. Zussman, G., Brzezinski, A., Modiano, E.: Multihop local pooling for distributed throughput maximization in wireless networks. In: IEEE INFOCOM 2008, Phoenix, Arizona, Apr. (2008)

    Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    Google Scholar 

  9. Jiang, L., Walrand, J.: A distributed CSMA algorithm for throughput and utility maximization in wireless networks. In: the 46th Annual Allerton Conference on Communication, Control, and Computing, Sep. 23–26 (2008)

    Google Scholar 

  10. Ni, J., Tan, B., Srikant, R.: Q-CSMA: queue-length based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks. In: IEEE INFOCOM, San Diego, CA, Mar. (2010)

    Google Scholar 

  11. Jiang, L., Walrand, J.: Approaching throughput-optimality in a distributed CSMA algorithm: collisions and stability. In: ACM Mobihoc’09 S3 Workshop, May (2009)

    Google Scholar 

  12. Rajagopalan, S., Shah, D., Shin, J.: Network adiabatic theorem: an efficient randomized protocol for contention resolution. In: Proceedings of ACM Sigmetrics, June (2009)

    Google Scholar 

  13. Liu, J., Yi, Y., Proutiere, A., Chiang, M., Poor, H.V.: Towards utility optimal random access without message passing. J. Wirel. Commun. Mob. Comput. 10(1), 115–128 (2010). Special Issue on Advances in Wireless Communications and Networking

    Article  Google Scholar 

  14. Proutiere, A., Yi, Y., Lan, T., Chiang, M.: Resource allocation over network dynamics without timescale separation. In: IEEE INFOCOM, San Diego, CA, Mar. (2010)

    Google Scholar 

  15. Marbach, P., Eryilmaz, A., Ozdaglar, A.: Asynchronous CSMA policies in multihop wireless networks with primary interference constraints. IEEE Trans. Inf. Theory 57(6), 3644–3676 (2011)

    Article  Google Scholar 

  16. Durvy, M., Dousse, O., Thiran, P.: On the fairness of CSMA networks. IEEE J. Sel. Areas Commun. 27(7), 1093–1104 (2009)

    Article  Google Scholar 

  17. Boorstyn, R.R., Kershenbaum, A., Maglaris, B., Sahin, V.: Throughput analysis in multihop CSMA packet radio networks. IEEE Trans. Commun. 35(3), 267–274 (1987)

    Article  Google Scholar 

  18. Wang, X., Kar, K.: Throughput modelling and fairness issues in CSMA/CA based ad-hoc networks. In: IEEE INFOCOM 2005, Miami, Florida, Mar. (2005)

    Google Scholar 

  19. Liew, S.C., Kai, C., Leung, J., Wong, B.: Back-of-the-envelope computation of throughput distributions in CSMA wireless networks. In: IEEE ICC (2009)

    Google Scholar 

  20. Chen, M., Liew, S.C., Shao, Z., Kai, C.: Markov approximation for combinatorial network optimization. In: IEEE INFOCOM, San Diego, CA, Mar. (2010)

    Google Scholar 

  21. Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, New York (1979)

    Google Scholar 

  22. Kushner, H., Yin, G.: Stochastic Approximation and Recursive Algorithms and Applications. Springer, New York (2003)

    Google Scholar 

  23. Borkar, V.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  24. Jiang, L., Walrand, J.: Convergence and stability of a distributed CSMA algorithm for maximal network throughput. In: IEEE Conference on Decision and Control, Shanghai, China, Dec. (2009)

    Google Scholar 

  25. Jiang, L., Shah, D., Shin, J., Walrand, J.: Distributed random access algorithm: scheduling and congestion control. IEEE Trans. Inf. Theory 56(12), 6182–6207 (2010)

    Article  Google Scholar 

  26. Jiang, L., Ni, J., Srikant, R., Walrand, J.: Performance bounds of distributed CSMA scheduling. In: Information Theory and Application Workshop, UCSD, Feb. (2010)

    Google Scholar 

  27. Jiang, L., Leconte, M., Ni, J., Srikant, R., Walrand, J.: Fast mixing of parallel Glauber dynamics and low-delay CSMA scheduling. In: IEEE INFOCOM, Shanghai, China, Apr. (2011). Available online: http://arxiv.org/abs/1008.0227

    Google Scholar 

  28. Shah, D., Tse, D.N.C., Tsitsiklis, J.N.: Hardness of low delay network scheduling. IEEE Trans. Inform. Theory (2009), submitted

  29. Jiang, L., Walrand, J.: Scheduling and Congestion Control for Wireless and Processing Networks. Synthesis Lectures on Communication Networks. Morgan & Claypool Publishers, San Rafael (2010)

    Google Scholar 

  30. Shah, D., Shin, J.: Delay optimal queue-based CSMA. In: ACM Sigmetrics (Poster), June (2010)

    Google Scholar 

  31. Lotfinezhad, M., Marbach, P.: Throughput-optimal random access with order-optimal delay. In: IEEE INFOCOM, Shanghai, China, Apr. (2010)

    Google Scholar 

  32. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)

    Google Scholar 

Download references

Acknowledgements

This work is supported by MURI Grant BAA 07-036.18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Jiang.

Appendices

Appendix A: Proof of Theorem 2

Proof

The dynamics of r[j], by (12) and (11), is

$$r_{k}[j+1]= \bigl\{r_{k}[j]+\alpha\bigl(\hat{\lambda}_{k}[j]-\hat{s}_{k}[j] \bigr) \bigr \}_{+}, \quad \forall k.$$

Define \(d[j]:=\frac{1}{2}\|\mathbf{r}[j]-\mathbf{r}^{*}\|^{2}\ge0\). Note that r 0 element-wise. Then

where the last step follows from the fact that \(\hat{\lambda }_{k}[j]\le1,\ \forall k,j\) since the arrivals are assumed Bernoulli. Therefore,

$$E_{j} \bigl\{d[j+1] \bigr\}-d[j]\le\alpha\bigl(\boldsymbol {\lambda}-\mathbf{s} \bigl(\mathbf{r}[j] \bigr) \bigr)^{T} \bigl(\mathbf{r}[j]-\mathbf{r}^{*} \bigr)+\frac{1}{2}\alpha^{2}K,$$

where we have used the assumptions of Theorem 2.

Since the dual function g(r) is convex and s(r[j])−λ is a subgradient at the point r[j], we have

$$\bigl(\mathbf{s} \bigl(\mathbf{r}[j] \bigr)-\boldsymbol{\lambda}\bigr)^{T} \bigl(\mathbf{r}^{*}-\mathbf{r}[j] \bigr)\le g\bigl(\mathbf{r}^{*} \bigr)-g \bigl(\mathbf{r}[j] \bigr).$$

Define the region

$$\mathcal{A}_{\alpha K}:= \bigl\{\mathbf{r}\ge\mathbf{0}|g(\mathbf {r})\le g\bigl(\mathbf{r}^{*} \bigr)+\alpha K \bigr\}.$$

We will show later that \(\mathcal{A}_{\alpha K}\) is bounded.

Then, if \(\mathbf{r}[j]\notin\mathcal{A}_{\alpha K}\), we have g(r[j])>g(r )+αK, and therefore

(21)

Also,

(22)

By (21) and (22), we conclude that the set \(\mathcal{A}_{\alpha K}\) is recurrent for r[j]. This establish the stability of r[j].Footnote 3 Finally, since r[j] and the queue lengths X(t) are proportional by (12), the queues are also stable.

It remains to be shown that the set \(\mathcal{A}_{\alpha K}\) is bounded. Since λ is strictly feasible, there exist δ>0 and a distribution \(\tilde{\mathbf{u}}\) such that \(\sum_{\sigma }\tilde{u}_{\sigma}\sigma_{k}=\lambda_{k}+\delta,\ \forall k\). So, \(\mathcal{L}(\tilde{\mathbf{u}};\mathbf{r})=-\sum_{\sigma\in \varOmega}[\tilde{u}_{\sigma}\log(\tilde{u}_{\sigma})]+\sum _{k}[r_{k}(\sum_{\sigma}\tilde{u}_{\sigma}\sigma_{k}-\lambda _{k})]=-\sum_{\sigma\in\varOmega}[\tilde{u}_{\sigma}\log(\tilde {u}_{\sigma})]+\delta\sum_{k}r_{k}\ge\delta\sum_{k}r_{k}\). By (9), we have \(g(\mathbf{r})\ge\mathcal {L}(\tilde{\mathbf{u}};\mathbf{r})\ge\delta\sum_{k}r_{k}\). Therefore, any \(\mathbf{r}\in\mathcal{A}_{\alpha K}\) must satisfy that \(\sum_{k}r_{k}\le\frac{\alpha K+g(\mathbf{r}^{*})}{\delta}\) and r k ≥0, ∀k. This proves that \(\mathcal{A}_{\alpha K}\) is bounded. □

Appendix B: Proof of Lemma 2

Proof

In view of the queue dynamics (11), at time instance (j+1)T, \(\bar{\mathbf{r}}\) is updated as

$$\bar{r}_{k}[j+1]=\max\bigl\{\bar{r}_{k}[j]+\alpha\cdot \bigl[\hat{\lambda}_{k}[j]-\hat{s}_{k}[j] \bigr],r_{\min} \bigr\}, \quad \forall k. $$
(23)

We use E j [⋅] to denote the conditional expectation E[⋅|X[j],σ[j]] where σ[j]:=σ(jT) is the transmission schedule just before time instance jT. And Pr j [⋅] denotes the conditional probability Pr{⋅|X[j],σ[j]}.

Now we compute \(E_{j}[\hat{s}_{k}[j]]\) for every link k:

where μ σ[j],τ is the distribution of the CSMA Markov chain after τ slots if the Markov chain starts with schedule σ[j]. Remember that \(s_{k}(\mathbf{r}) =\sum_{\sigma\in\varOmega:\sigma_{k}=1}\pi(\sigma;\mathbf{r})\), so

Therefore, by (16), we have

$$\bigl|E_{j} \bigl[\hat{s}_{k}[j] \bigr]-s_{k} \bigl(\mathbf{r}[j] \bigr)\bigr|\le\delta/(4K\cdot D),\quad \forall k,j. $$
(24)

Next we show that \(\bar{\mathbf{r}}[j]\) is stable. Define the Lyapunov function

$$L(\bar{\mathbf{r}}):=\sum_{k}L_{k}(\bar{r}_{k})$$

where

Note that the minimal value of \(L(\bar{\mathbf{r}})\) is achieved at the point \(\tilde{\mathbf{r}}\). (So \(\tilde{\mathbf{r}}\) serves as the “attraction point” of our algorithm.) Unlike the usual quadratic Lyapunov function used in Sects. 2.2 and 2.3, this Lyapunov function is partially quadratic and partially linear.

We have

(25)

where \(r_{k}=\min\{\bar{r}_{k},r_{\max}\}\) as defined.

Next we prove the following useful inequality:

$$L_{k} \bigl(\bar{r}_{k}[j+1] \bigr)-L_{k}\bigl( \bar{r}_{k}[j] \bigr)\le\alpha\bigl(\hat{\lambda}_{k}[j]-\hat{s}_{k}[j] \bigr)L_{k}^{\prime} \bigl(\bar{r}_{k}[j] \bigr)+\alpha^{2}/2. $$
(26)

For this purpose, first note that \(L_{k}(\bar{r}_{k}[j+1])\le L_{k}(\hat{\bar{r}}_{k}[j+1])\) where \(\hat{\bar{r}}_{k}[j+1]:=\bar{r}_{k}[j]+\alpha\cdot[\hat {\lambda}_{k}[j]-\hat{s}_{k}[j]]\). (This is clearly true if \(\hat{\bar{r}}_{k}[j+1]\ge r_{\min}\). If \(\hat{\bar{r}}_{k}[j+1]<r_{\min}\), then \(L_{k}(\bar {r}_{k}[j+1])=L_{k}(r_{\min})\le L_{k}(\hat{\bar{r}}_{k}[j+1])\).) Therefore, we only need to prove

$$L_{k} \bigl(\hat{\bar{r}}_{k}[j+1] \bigr)-L_{k}\bigl(\bar{r}_{k}[j] \bigr)\le\alpha\bigl(\hat{\lambda}_{k}[j]-\hat{s}_{k}[j] \bigr)L_{k}^{\prime} \bigl(\bar{r}_{k}[j] \bigr)+\alpha^{2}/2. $$
(27)

Consider several cases:

  1. (i)

    If \(\hat{\bar{r}}_{k}[j+1]\), \(\bar {r}_{k}[j]\ge r_{\max}\), (27) is true.

  2. (ii)

    If \(\hat{\bar {r}}_{k}[j+1]\), \(\bar{r}_{k}[j]<r_{\max}\), then \(L_{k}(\hat{\bar{r}}_{k}[j+1])-L_{k}(\bar{r}_{k}[j])=\frac {1}{2}(\hat{\bar{r}}_{k}[j+1]-\tilde{r}_{k})^{2}-\frac{1}{2}(\bar {r}_{k}[j]-\tilde{r}_{k})^{2}=\alpha\cdot(\hat{\lambda }_{k}[j]-\hat{s}_{k}[j])(\bar{r}_{k}[j]-\tilde{r}_{k})+\frac {1}{2}\alpha^{2}(\hat{\lambda}_{k}[j]-\hat{s}_{k}[j])^{2}\). Due to the assumption of Bernoulli arrivals, we have \(|\hat{\lambda }_{k}[j]-\hat{s}_{k}[j]|\le1\). Then (27) follows.

  3. (iii)

    Assume that \(\bar {r}_{k}[j]\ge r_{\max}\) and \(\hat{\bar{r}}_{k}[j+1]<r_{\max}\). Then \(L_{k}(r_{\max })-L_{k}(\bar{r}_{k}[j])=(r_{\max}-\tilde{r}_{k})(r_{\max}-\bar {r}_{k}[j])\), and similar to case (ii), \(L_{k}(\hat{\bar {r}}_{k}[j+1])-L_{k}(r_{\max})\le(r_{\max}-\tilde{r}_{k})(\hat {\bar{r}}_{k}[j+1]-r_{\max})+\frac{1}{2}\alpha^{2}\). Therefore, \(L_{k}(\hat{\bar{r}}_{k}[j+1])-L_{k}(\bar{r}_{k}[j])\le (r_{\max}-\tilde{r}_{k})(\hat{\bar{r}}_{k}[j+1]-\bar {r}_{k}[j])+\frac{1}{2}\alpha^{2}\), proving (27).

  4. (iv)

    Assume that \(\bar {r}_{k}[j]<r_{\max}\) and \(\hat{\bar{r}}_{k}[j+1]\ge r_{\max}\). Note that \(L_{k}(\hat {\bar{r}}_{k}[j+1])\le\frac{1}{2}[(\hat{\bar{r}}_{k}[j+1]-\tilde {r}_{k})^{2}+(r_{\max}-\tilde{r}_{k})^{2}]\). So \(L_{k}(\hat{\bar{r}}_{k}[j+1])-L_{k}(\bar{r}_{k}[j])\le\frac {1}{2}(\hat{\bar{r}}_{k}[j+\nobreak 1]-\tilde{r}_{k})^{2}-\frac{1}{2}(\bar {r}_{k}[j]-\tilde{r}_{k})^{2}\le\alpha(\hat{\lambda}_{k}[j]-\hat {s}_{k}[j])L_{k}^{\prime}(\bar{r}_{k}[j])+\alpha^{2}/2\) similar to case (ii). This completes the proof of (26).

Given a \(\bar{\mathbf{r}}[j]\notin\mathcal{D}\), at least one element of r[j] is equal to r max (i.e., r k[j]=r max for some k′). Using (26), (25), (24), and (15), we obtain the following:

which establishes the negative drift of \(L(\bar{\mathbf{r}}[j])\) if \(\bar{\mathbf{r}}[j]\notin\mathcal{D}\). Also, it is clear that for any \(\bar{\mathbf{r}}[j]\in\mathcal{D}\), we have Δ[j]<∞ (since \(\bar{\mathbf{r}}[j+1]-\bar{\mathbf{r}}[j]\) is bounded). By the Foster–Lyapunov criteria, \(\bar{\mathbf{r}}[j]\) is stable. By (14), X[j] is also stable.

The proof of (18) is similar to that of Theorem 8 in [27]. For completeness, we present the proof in the following.

Denote \(\bar{L}:=\max_{\bar{\mathbf{r}}\in\mathcal{D}}L(\bar {\mathbf{r}})\). Then if \(L(\bar{\mathbf{r}})>\bar{L}\), we have \(\bar{\mathbf {r}}\notin\mathcal{D}\). Define

$$G(\bar{\mathbf{r}}):= \bigl[L(\bar{\mathbf{r}})-\bar{L} \bigr]_{+}.$$

Note that \(|\bar{r}_{k}[j+1]-\bar{r}_{k}[j]|\le\alpha,\ \forall k,j\). Also, (25) implies that \(|\frac{\partial L_{k}(\bar{r}_{k})}{\partial\bar{r}_{k}}|\le D\), \(\forall\bar {r}_{k}\ge r_{\min}\). Therefore,

Consider the following two cases.

Case 1: If \(L(\bar{\mathbf{r}}[j])-\bar{L}>0\), then \(G(\bar{\mathbf {r}}[j])=L(\bar{\mathbf{r}}[j])-\bar{L}>0\), and \(\bar{\mathbf{r}}[j]\notin\mathcal{D}\). Therefore,

Therefore,

Case 2: If \(G(\bar{\mathbf{r}}[j])=0\), then \(0\le G(\bar{\mathbf {r}}[j+1])\le c\). Therefore,

$$E_{j} \bigl[G^{2} \bigl(\bar{\mathbf{r}}[j+1]\bigr)-G^{2} \bigl(\bar{\mathbf{r}}[j] \bigr) \bigr]\le c^{2}=-G \bigl(\bar{\mathbf{r}}[j] \bigr)\alpha \delta/2+c^{2}.$$

Combining Cases 1 and 2, we have

$$E_{j} \bigl[G^{2} \bigl(\bar{\mathbf{r}}[j+1]\bigr)-G^{2} \bigl(\bar{\mathbf{r}}[j] \bigr) \bigr]\le-G \bigl (\bar{\mathbf{r}}[j] \bigr)\alpha\delta/2+c^{2}.$$

Taking expectations on both sides yields

$$E \bigl[G^{2} \bigl(\bar{\mathbf{r}}[j+1] \bigr)-G^{2}\bigl(\bar{\mathbf{r}}[j] \bigr) \bigr]\le-E \bigl[G \bigl(\bar {\mathbf{r}}[j]\bigr) \bigr]\alpha\delta/2+c^{2}.$$

Summing the above inequality from j=0 to j=J−1, and dividing both sides by J, we have

$$E \bigl[G^{2} \bigl(\bar{\mathbf{r}}[J] \bigr)-G^{2}\bigl( \bar{\mathbf{r}}[0] \bigr) \bigr]/J\le -(\alpha\delta/2)\sum_{j=0}^{J-1}E\bigl[G \bigl(\bar{\mathbf{r}}[j] \bigr) \bigr]/J+c^{2}.$$

Therefore,

$$\limsup_{J\rightarrow\infty}\sum_{j=0}^{J-1}E\bigl(G \bigl(\bar{\mathbf{r}}[j] \bigr) \bigr)/J\le\frac {c^{2}}{\alpha\delta/2}=2K\frac{c^{2}}{\delta^{2}}=2KD^{2}.$$

Note that

$$W(\bar{\mathbf{r}}):=\sum_{k}(r_{\max}-\tilde{r}_{k}) (\bar{r}_{k}-\tilde{r}_{k})\le L(\bar{\mathbf{r}})\le G(\bar{\mathbf{r}})+\bar{L}.$$

So

$$\limsup_{J\rightarrow\infty}\sum_{j=0}^{J-1}E\bigl(W \bigl(\bar{\mathbf{r}}[j] \bigr) \bigr)/J\le2KD^{2}+\bar{L}\le3KD^{2}.$$

In view of (14), we then have

Since \(r_{\max}-\tilde{r}_{k}\ge\epsilon_{0},\ \forall k\), we have

$$\limsup_{J\rightarrow\infty}\sum_{j=0}^{J-1}\sum _{k}E \bigl(X_{k}[j] \bigr)/J\le4\frac{T}{\alpha}\frac{1}{\epsilon_{0}}KD^{2}.$$

Since in a slot each queue is increased at most by 1, we have

$$\sum_{k}\bar{X}_{k}\le \limsup_{J\rightarrow\infty}\sum_{j=0}^{J-1}\sum _{k}E \bigl(X_{k}[j] \bigr)/J+KT.$$

So,

$$\frac{1}{K}\sum_{k}\bar{X}_{k}\le T \biggl\{\frac{4}{\alpha}\frac{1}{\epsilon_{0}}D^{2}+1 \biggr \}.$$

 □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Walrand, J. Stability and delay of distributed scheduling algorithms for networks of conflicting queues. Queueing Syst 72, 161–187 (2012). https://doi.org/10.1007/s11134-012-9286-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-012-9286-x

Keywords

Mathematics Subject Classification (2000)

Navigation