Skip to main content
Log in

Tail asymptotics of the waiting time and the busy period for the \({{\varvec{M/G/1/K}}}\) queues with subexponential service times

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior of the tail probabilities of the waiting time and the busy period for the \(M/G/1/K\) queues with subexponential service times under three different service disciplines: FCFS, LCFS, and ROS. Under the FCFS discipline, the result on the waiting time is proved for the more general \(GI/G/1/K\) queue with subexponential service times and lighter interarrival times. Using the well-known Laplace–Stieltjes transform (LST) expressions for the probability distribution of the busy period of the \(M/G/1/K\) queue, we decompose the busy period into a sum of a random number of independent random variables. The result is used to obtain the tail asymptotics for the waiting time distributions under the LCFS and ROS disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abate, J., Whitt, W.: Asymptotics for M/G/1 low-priority waiting-time tail probabilities. Queueing Syst. 25, 173–233 (1997)

    Article  Google Scholar 

  2. Andersen, L.N.: Subexponential loss rate asymptotics for Lévy processes. Math. Meth. Oper. Res. 73, 91–108 (2011)

    Article  Google Scholar 

  3. Andersen, L.N., Asmussen, S.: Local time asymptotics for centered Lévy processes with two-sided reflection. Stochastic Models 27, 202–219 (2011)

    Article  Google Scholar 

  4. Asmussen, S.: Applied Probability and Queues. Springer, New York (2003)

    Google Scholar 

  5. Asmussen, S., Klüppelberg, C., Sigman, K.: Sampling at subexponential times, with queueing applications. Stoch. Processes Their Appl. 79, 265–286 (1999)

    Article  Google Scholar 

  6. Asmussen, S., Pihlsgård, M.: Loss rates for Lévy processes with two reflecting barriers. Math. Oper. Res. 32, 308–321 (2007)

    Article  Google Scholar 

  7. Baiocchi, A.: Asymptotic behavior of the loss probability of the M/G/1/K and G/M/1/K queues. Queueing Syst. 10, 235–248 (1992)

    Article  Google Scholar 

  8. Baiocchi, A.: Analysis of the loss probability of the MAP/G/1/K queue Part I: asymptotic theory. Commun. Stat. Stoch. Models 10, 867–893 (1994)

    Google Scholar 

  9. Baltrunas, A., Daley, D.J., Klüppelberg, C.: Tail behavior of the busy period of GI/G/1 queue with subexponential service times. Stoch. Processes Appl. 111, 237–258 (2004)

    Article  Google Scholar 

  10. Borst, S.C., Boxma, O.J., Núñez-Queija, R., Zwart, A.P.: The impact of the service discipline on delay asymptotics. Perform. Eval. 54, 175–206 (2003)

    Article  Google Scholar 

  11. Boxma, O., Denisov, D.: Sojourn time tails in the single server queue with heavy-tailed service times. Queueing Syst. 69, 101–119 (2011)

    Article  Google Scholar 

  12. Boxma, O., Zwart, B.: Tails in scheduling. ACM SIGMETRICS Perform. Eval. Rev. 34, 13–20 (2007)

    Article  Google Scholar 

  13. Cohen, J.W.: Some results on regular variation for distributions in queueing and fluctuation theory. J. Appl. Probab. 10, 343–353 (1973)

    Article  Google Scholar 

  14. De Meyer, A., Teugels, J.L.: On the asymptotic behavior of the distributions of the busy period and service time in M/G/1. J. Appl. Probab. 17, 802–813 (1980)

    Article  Google Scholar 

  15. Egorova, R., Zwart, B.: Tail behavior of conditional sojourn times in processor-sharing queues. Queueing Syst. 55, 107–121 (2007)

    Article  Google Scholar 

  16. Egorova, R., Zwart, A.P., Boxma, O.J.: Sojourn time tails in the M/D/1 processor sharing queue. Probab. Eng. Inf. Sci. 20, 429–446 (2006)

    Article  Google Scholar 

  17. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Heidelberg (1997)

    Book  Google Scholar 

  18. Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer, New York (2011)

    Book  Google Scholar 

  19. Jelenković, P.R.: Subexponential loss rates in a GI/GI/1 queue with applications. Queues with heavytailed distributions. Queueing Syst. 33, 91–123 (1999)

    Article  Google Scholar 

  20. Jelenković, P.R., Momc̆ilović, P.: Large deviations of square root insensitive random sums. Math. Oper. Res. 29(2), 398–406 (2004)

    Article  Google Scholar 

  21. Kim, J., Kim, B.: Asymptotic analysis for loss probability of queues with finite GI/M/1 type structure. Queueing Syst. 57, 47–55 (2008)

    Article  Google Scholar 

  22. Kyprianou, E.K.: On the quasi-stationary distribution of the virtual waiting time in queues with poisson arrivals. J. Appl. Probab. 8, 494–507 (1971)

    Article  Google Scholar 

  23. Liu, Y., Zhao, Y.Q.: Asymptotic behavior of the loss probability for an M/G/1/N queue with vacations. Appl. Math. Model. 37, 1768–1780 (2013)

    Article  Google Scholar 

  24. Mandjes, M.R.H., Zwart, A.P.: Large deviations of sojourn times in processor sharing queues. Queueing Syst. 52, 237–250 (2006)

    Article  Google Scholar 

  25. Miller, L.W.: A note on the busy period of an M/G/1 finite queue. Oper. Res. 23(6), 1179–1182 (1975)

    Article  Google Scholar 

  26. Miyazawa, M., Sakuma, Y., Yamaguchi, S.: Asymptotic behaviors of the loss probability for a finite buffer queue with QBD structure. Stoch. Models 23, 79–95 (2007)

    Article  Google Scholar 

  27. Pakes, A.G.: On the tails of waiting-time distributions. J. Appl. Probab. 12, 555–564 (1975)

    Article  Google Scholar 

  28. Palmowski, Z., Rolski, T.: On the exact asymptotics of the busy period in GI/G/1 queues. Adv. Appl. Probab. 38(3), 792–803 (2006)

    Article  Google Scholar 

  29. Pihlsgård, M.: Loss rate asymptotics in a \(GI/G/1\) queue with finite buffer. Stoch. Models 21, 913–931 (2005)

    Article  Google Scholar 

  30. Takagi, H.: Queueing analysis: A Foundation of Performance Evaluation, vol. 2: Finite Systems. North-Holland, Amsterdam (1993)

    Google Scholar 

  31. Takagi, H., LaMaire, R.O.: On the busy period of an M/G/1/K queue. Oper. Res. 42(1), 192–193 (1994)

    Article  Google Scholar 

  32. Veraverbeke, N.: Asymptotic behavior of Wiener–Hopf factors of a random walk. Stoch. Processes Appl. 5, 27–37 (1997)

    Article  Google Scholar 

  33. Yashkov, S.F.: On asymptotic property of the sojourn time in the M/G/1-EPS queue. Inf. Process 6, 256–257 (2006). (in Russian)

    Google Scholar 

  34. Yashkov, S.F., Yashkova, A.S.: Processor sharing: a survey of the mathematical theory. Autom. Remote Control 68, 1662–1731 (2007)

    Article  Google Scholar 

  35. Zhen, Q., Knessl, C.: Asymptotic expansions for the conditional sojourn time distribution in the M/M/1-PS queue. Queueing Syst. 57, 157–168 (2007)

    Article  Google Scholar 

  36. Zhen, Q., Knessl, C.: Asymptotic expansions for the sojourn time distribution in the M/G/1-PS queue. Math. Meth. Oper. Res. 71, 201–244 (2010)

    Article  Google Scholar 

  37. Zwart, A.P.: A fluid queue with a finite buffer and subexponential input. Adv. Appl. Probab. 32, 221–243 (2000)

    Google Scholar 

  38. Zwart, A.P.: Tail asymptotic for the busy period in the GI/G/1 queue. Math. Oper. Res. 36(3), 485–493 (2001)

    Article  Google Scholar 

  39. Zwart, A.P., Boxma, O.J.: Sojourn time asymptotics in the \(M/G/1\) processor sharing queue. Queueing Syst. 35, 141–166 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank an anonymous referee for his/her suggestions, which inspired us to have a significantly improved proof to Theorem 2.1 and to generalize our result to the \(GI/G/1/K\) queue. The authors also thank Drs. O. Boxma and B. Zwart for their suggestions of references. This research was supported in part through Summer Fellowships of the University of Northern Iowa, the National Natural Science Foundation of China (Grant No. 11171019) and an NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Appendix: Useful Literature Results

Appendix: Useful Literature Results

For convenience, we collected useful literature results for this paper in this appendix.

The following two basic properties of the subexponential distribution can be found in Embrechts et al. [17].

Lemma 6.1

(Lemma 1.3.5 in [17]) If \(F \in \mathcal S \), let \(X\) be a random variable having \(F\) as its distribution. Then, (a)

$$\begin{aligned} \lim _{x\rightarrow \infty } P(X\!>\!x\!+\!y | X\!>\!x ) \!=\! \lim _{x\rightarrow \infty } \frac{\overline{F}(x+y)}{\overline{F}(x)}\!=\!1, \; \text{ uniformly} \text{ for} \text{ any} \text{ compact} \text{ set} \text{ of} y; \end{aligned}$$

and (b)

$$\begin{aligned} \lim _{x\rightarrow \infty } e^{\epsilon x} P(X>x)=\infty =E(e^{\epsilon X}), \quad \text{ for} \text{ all} \epsilon >0. \end{aligned}$$

The following lemma says that the class \(\mathcal S \) is closed under tail-equivalence.

Lemma 6.2

(Lemma A 3.15 in [17]) Suppose that \(F\) and \(G\) are distributions on \((0,\infty )\). If \(F \in \mathcal S \) and

$$\begin{aligned} \lim _{x \rightarrow \infty } \frac{\overline{G}(s)}{\overline{F}(x)} =c \in (0, \infty ), \end{aligned}$$

then, \(G \in \mathcal S \).

The following result is useful for obtaining the asymptotic tail probability of the sum of independent random variables having subexponential distributions.

Lemma 6.3

(Lemma A 3.28 of in [17]) Let \(Y_1, Y_2, \ldots , Y_m\) be independent r.v.s and \(F \in \mathcal S \). Assume

$$\begin{aligned} \lim _{x\rightarrow \infty } \frac{P(Y_i>x)}{\overline{F}(x)} = a_i \in [0, \infty ], \quad i=1, 2,\ldots ,m. \end{aligned}$$

Then,

$$\begin{aligned} \lim _{x\rightarrow \infty } \frac{P\left( \sum _{i=1}^mY_i>x \right) }{\overline{F}(x)} = \sum _{i=1}^m a_i. \end{aligned}$$

Corollary 6.1

If \(F_1\) and \(F_2\) are two distributions such that \(F_1\in \mathcal S \) and \(\overline{F}_2(x)=o(\overline{F}_1(x))\), then \(F_1*F_2\in \mathcal S \) and \(\overline{F_1*F_2}(x) \sim \overline{F}_1(x)\) as \(x\rightarrow \infty \).

Lemma 6.4

(Geometric Sum, p. 580 in [17]) Let \(Y_1, Y_2, \ldots \) be a sequence of i.i.d. r.v.s with a common d.f. \(F(x)\). Let \(N\) be an integer-valued random variable, which is independent of the sequence \(Y_i\) and has a geometric distribution \(P(N=k) = (1-p)p^{k}\), \(k=0, 1,2,\ldots \). Define \(S_0\equiv 0\) and \(S_n = Y_1+ Y_2+ \cdots + Y_n\) for \(n \ge 1\). Then,

$$\begin{aligned} G(x)\overset{\triangle }{=}P(S_N \le x)=(1-p)\sum _{k=0}^{\infty } p^{k} F^{*k}(x), \end{aligned}$$

where \(F^{*n}\) denotes the \(n\)-fold convolution of \(F\) (\(F^{*0}\) is defined as the Heaviside unit step function), and the LST of \(G(x)\) is given by

$$\begin{aligned} \gamma (s)&= \frac{1-p}{1-p f(s)}, \end{aligned}$$

where \(f(s)\) is the LST of \(F(x)\).

Lemma 6.5

(p. 296 in Asmussen [4]) Let \(Y_1, Y_2, \ldots \) be i.i.d. r.v.s with a common subexponential distribution \(F\) and let \(N\) be an integer-valued random variable, independent of the sequence \(Y_i\), with \(Ez^N < \infty \) for some \(z>1\). Then,

$$\begin{aligned} P(Y_1+Y_2+\cdots +Y_N>x) \sim EN \overline{F}(x). \end{aligned}$$

Specifically, if \(P(N=k) = (1-p)p^{k}\), \(k=0, 1,2, \ldots \), then

$$\begin{aligned} P(Y_1+Y_2+\cdots +Y_N>x) \sim \frac{p}{1-p} \overline{F}(x)\quad \text{ as} x\rightarrow \infty . \end{aligned}$$

The following results can be easily verified.

Lemma 6.6

  1. (1)

    Let \(Y_i\) be a r.v. whose d.f. has the LST \(g_i(s)\), \(i=1, 2,\ldots ,n\). Define

    $$\begin{aligned} X = Y_i \text{ with} \text{ probability} p_i,\ 1\le i \le n, \end{aligned}$$

    where \(\sum _{i=1}^n p_i=1\). Then, the d.f. of \(X\) has the LST \(g_X(s)=\sum _{i=1}^n p_i f_i(s)\);

  2. (2)

    Let \(Y_1, Y_2, \ldots , Y_n\) be independent r.v.s whose d.f.s have the LST \(g_1(s),g_2(s),\ldots ,g_n(s)\), respectively. Then, \(g(s)=\prod _{i=1}^n g_i(s)\) can be viewed as the LST of the d.f. of the r.v. \(X\overset{d}{=}\sum _{i=1}^n Y_i\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Wang, J. & Zhao, Y.Q. Tail asymptotics of the waiting time and the busy period for the \({{\varvec{M/G/1/K}}}\) queues with subexponential service times. Queueing Syst 76, 1–19 (2014). https://doi.org/10.1007/s11134-013-9348-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-013-9348-8

Keywords

Mathematics Subject Classification (2010)

Navigation