Skip to main content
Log in

Clock synchronization in symmetric stochastic networks

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider a stochastic model of clock synchronization in a wireless network of \(N\) sensors interacting with one dedicated accurate time server. For large \(N\) we find an estimate of the final time sychronization error for global and relative synchronization. The main results concern the behavior of the network on different timescales \(t_{N}\rightarrow \infty \), \(N\rightarrow \infty \). We discuss the existence of phase transitions and find the exact timescales for which an effective clock synchronization of the system takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont (1997)

    Google Scholar 

  2. Cox, D.R.: Renewal Theory. Methuen, London (1962)

    Google Scholar 

  3. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)

    Google Scholar 

  4. Dressler, F.: Self-Organization in Sensor and Actor Networks. Wiley, Chichester (2007)

  5. Flavia, F., Ning, J., Simonot-Lion, F., Song, Y.-Q.: Optimal on-line \((m, k)\)-firm constraint assignment for real-time control tasks based on plant state information. In: Emerging Technologies and Factory Automation, 2008, pp. 908–915

  6. Gaderer, G., Nagy, A., Loschmidt, P., Sauter, T.: Int. J. Distrib. Sensor Netw. Article ID 294852, 11 pp. (2011). doi:10.1155/2011/294852

  7. Gnedenko, B.V., Kovalenko, I.N.: Introduction to Queueing Theory. Israel Program of Scientific Translations, Jerusalem (1968)

    Google Scholar 

  8. Li Q., Rus D.: Global clock synchronization in sensor networks. In: Proceedings of IEEE Conference on Computer Communications (INFOCOM 2004), vol. 1, Hong Kong, China, March 2004

  9. Li, Y., Song, Y.-Q., Schott, R., Wang, Z., Sun, Y.: Impact of link unreliability and asymmetry on the quality of connectivity in large-scale sensor networks. Sensors 8(10), 6674–6691 (2008)

    Article  Google Scholar 

  10. Malyshev, V., Manita, A.: Phase transitions in the time synchronization model. Theory Probab. Appl. 50, 134–141 (2006)

    Article  Google Scholar 

  11. Malyshkin, A.G.: Limit dynamics for stochastic models of data exchange in parallel computation networks. Prob. Inf. Transm. 42, 234–250 (2006)

    Article  Google Scholar 

  12. Manita, A.: Markov processes in the continuous model of stochastic synchronization. Russ. Math. Surv. 61, 993–995 (2006)

    Article  Google Scholar 

  13. Manita, A.: Brownian particles interacting via synchronizations. Commun. Stat. Theory Methods 40(19–20), 3440–3451 (2011)

    Article  Google Scholar 

  14. Manita, A.: On Markovian and non-Markovian models of stochastic synchronization. In: Proceedings of the 14th Conference “Applied Stochastic Models and Data Analysis” (ASMDA), 2011, Rome, Italy, pp. 886–893

  15. Manita, A.: Stochastic synchronization of large wireless networks with dedicated accurate time server. In: International conference “Probability Theory and its Applications” in Commemoration of the Centennial of B.V. Gnedenko, Moscow, June 26–30, 2012, pp. 198–199

  16. Manita, A.D.: Stochastic synchronization in a large system of identical particles. Theory Probab. Appl. 53, 155–161 (2009)

    Article  Google Scholar 

  17. Manita, A., Shcherbakov, V.: Asymptotic analysis of a particle system with mean-field interaction. Markov Process. Relat. Fields 11, 489–518 (2005)

    Google Scholar 

  18. Manita, A., Simonot, F.: Clustering in stochastic asynchronous algorithms for distributed simulations. In: Lecture Notes in Computer Science, vol. 3777, November 2005, pp. 26–37

  19. Mitra, D., Mitrani, I.: Analysis and optimum performance of two message-passing parallel processors synchronized by rollback. Performance Evaluation 7, 111–124 (1987)

    Article  Google Scholar 

  20. Navet, N., Song, Y.-Q., Simonot, F.: Worst-case deadline failure probability in real-time applications distributed over controller area network. J. Syst. Archit. 46(7), 607–617 (2000)

    Article  Google Scholar 

  21. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, New York (2001)

  22. Ring, F., Nagy, A., Gaderer, G., Loschmidt, P.: Clock synchronization simulation for wireless sensor networks. In: Proceedings of the IEEE Sensors Conference, 2010, Waikoloa, pp. 2022–2026. doi:10.1109/ICSENS.2010.5690409

  23. Romer, K.: Time synchronization in ad hoc networks. In: Proceedings of ACM Symposium on Mobile Ad Hoc Networking and Computing, October 2001, pp. 173–182

  24. Sarma, A., Bettstetter, C., Dixit, S. (eds.): Self-organization in communication networks. In: Technologies for the Wireless Future, vol. 2. Wiley, Chichester (2006)

  25. Sheu, J.-P., Chen, Y.-S., Chang, C.-Y.: Energy conservation for broadcast and multicast routing in wireless ad hoc networks. In: Wu, J. (ed.) Handbook of Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer Networks. CRC Press, Boca Raton (2005)

  26. Simeone, O., Spagnolini, U., Bar-Ness, Y., Strogatz, S.H.: Distributed synchronization in wireless networks. IEEE Signal Process. Mag. 25(5), 81–97 (2008)

    Article  Google Scholar 

  27. Strogatz, S.H.: SYNC: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)

  28. Sundararaman, B., Buy, U., Kshemkalyani, A.D.: Clock synchronization for wireless sensor networks: a survey. Ad Hoc Netw. 3(3), 281–323 (2005)

    Google Scholar 

  29. Zhao, Y., Liu, J., Lee, E.A.: A programming model for time-synchronized distributed real-time systems. In: 13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS 2007), Institute of Electrical and Electronics Engineers Inc., April 2007

  30. Zhu, H., Ma, L., Ryu, B.K.: System and method for clock modeling in discrete-event simulation. US Patent 20090119086 A1, May 2009

Download references

Acknowledgments

The work is supported by Russian Foundation for Basic Research (Grant No. 12-01-00897). The author is grateful to L.G. Afanasyeva for many interesting and useful discussions. The author also thanks the anonymous referee for a number of valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Manita.

Appendix

Appendix

Proof of Lemma 6

Let \({a_{1}}\not ={a_{2}}\). It is straightforward to check that

$$\begin{aligned} \sum _{n_{2}=0}^{n}{a_{1}}^{n_{2}}{a_{2}}^{n-n_{2}}=\left( {a_{1}}-{a_{2}}\right) ^{-1}\left( {a_{1}}^{n+1}-{a_{2}}^{n+1}\right) . \end{aligned}$$

Using (24) for \(A={a_{1}}\) and \(A={a_{2}}\) we find \(U_{1}({a_{1}},{a_{2}})\).

Now let us calculate \(U_{2}({a_{1}},{a_{2}})\). After some simple algebra we have identity

$$\begin{aligned} \sum _{\begin{array}{c} n_{1}\ge 0,\, n_{2}\ge 0\\ n_{1}+n_{2}\le n\end{array}}\,{a_{1}}^{n_{1}}{a_{2}}^{n_{2}}=\frac{{\displaystyle \frac{1}{1-{a_{1}}}}-{\displaystyle \frac{1}{1-{a_{2}}}}}{{a_{1}}-{a_{2}}}\,-\,\frac{{\displaystyle \frac{{a_{1}}^{n+2}}{1-{a_{1}}}}-{\displaystyle \frac{{a_{2}}^{n+2}}{1-{a_{2}}}}}{{a_{1}}-{a_{2}}}, \end{aligned}$$

Applying (25) for \(A=1\), \(A={a_{1}}\), and \(A={a_{2}}\), we get that \(U_{2}({a_{1}},{a_{2}})\) multiplied by \(\delta _{N}^{2}\) is equal to

$$\begin{aligned}&\frac{{\displaystyle \frac{1}{1-{a_{1}}}}-{\displaystyle \frac{1}{1-{a_{2}}}}}{{a_{1}}-{a_{2}}}\,\left( 1-\frac{1+\delta _{N}t}{e^{\delta _{N}t}}\right) \\&-\,\frac{{\displaystyle \frac{\left( e^{-\delta _{N}t(1-{a_{1}})}-{\displaystyle \frac{1+\delta _{N}t{a_{1}}}{e^{\delta _{N}t}}}\right) }{1-{a_{1}}}}-{\displaystyle \frac{\left( e^{-\delta _{N}t(1-{a_{2}})}-{\displaystyle \frac{1+\delta _{N}t{a_{2}}}{e^{\delta _{N}t}}}\right) }{1-{a_{2}}}}}{{a_{1}}-{a_{2}}} \end{aligned}$$

By direct transformations and cancelation of terms this form can be reduced to the following one

$$\begin{aligned}&-\frac{{\displaystyle \frac{e^{-\delta _{N}t(1-{a_{1}})}-1}{1-{a_{1}}}}-{\displaystyle \frac{e^{-\delta _{N}t(1-{a_{2}})}-1}{1-{a_{2}}}}}{{a_{1}}-{a_{2}}}\\&\quad =\frac{1}{(1-{a_{1}})(1-{a_{2}})}-\frac{{\displaystyle \frac{e^{-\delta _{N}t(1-{a_{1}})}}{1-{a_{1}}}}-{\displaystyle \frac{e^{-\delta _{N}t(1-{a_{2}})}}{1-{a_{2}}}}}{{a_{1}}-{a_{2}}}. \end{aligned}$$

This proves the statement of Lemma 6 for \({a_{1}}\not ={a_{2}}\).

The case \({a_{1}}={a_{2}}\) is simpler than just considered case \({a_{1}}\not ={a_{2}}\). So we omit details here. Note that explicit expressions for \(U_{i}({a},{a})\), \(i=1,2\), correspond to formal limits of \(U_{i}({a_{1}},{a_{2}})\) as \({a_{1}}\rightarrow {a}\), \({a_{2}}\rightarrow {a}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manita, A. Clock synchronization in symmetric stochastic networks. Queueing Syst 76, 149–180 (2014). https://doi.org/10.1007/s11134-013-9386-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-013-9386-2

Keywords

Mathematics Subject Classification (2000)

Navigation