Skip to main content
Log in

A law of iterated logarithm for multiclass queues with preemptive priority service discipline

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

A law of iterated logarithm (LIL) is established for a multiclass queueing model, having a preemptive priority service discipline, one server and \(K\) customer classes, with each class characterized by a renewal arrival process and i.i.d. service times. The LIL limits quantify the magnitude of asymptotic stochastic fluctuations of the stochastic processes compensated by their deterministic fluid limits. The LIL is established in three cases: underloaded, critically loaded, and overloaded, for five performance measures: queue length, workload, busy time, idle time, and number of departures. The proof of the LIL is based on a strong approximation approach, which approximates discrete performance processes with reflected Brownian motions. We conduct numerical examples to provide insights on these LIL results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bramson, M., Dai, J.G.: Heavy traffic limits for some queueing networks. Ann. Appl. Probab. 11(1), 49–90 (2001)

    Article  Google Scholar 

  2. Harrison, M.: A limit theorem for priority queues in heavy traffic. J. Appl. Probab. 10(4), 907–912 (1973)

    Article  Google Scholar 

  3. Whitt, W.: Weak convergence theorems for priority queues: preemptive-Resume discipline. J. Appl. Probab. 8(1), 74–94 (1971)

    Article  Google Scholar 

  4. Chen, H., Zhang, H.Q.: A sufficient condition and a necessary condition for the diffusion approximations of multiclass queueing networks under priority service disciplines. Queueing Syst. 34(1–4), 237–268 (2000)

    Article  Google Scholar 

  5. Peterson, W.P.: A heavy traffic limit theorem for networks of queues with multiple customer types. Math. Oper. Res. 16(1), 90–118 (1991)

    Article  Google Scholar 

  6. Chen, H.: Fluid approximations and stability of multiclass queueing networks I: work-conserving disciplines. Ann. Appl. Probab. 5(3), 637–665 (1995)

    Article  Google Scholar 

  7. Chen, H., Shen, X.: Strong approximations for multiclass feedforward queueing networks. Ann. Appl. Probab. 10(3), 828–876 (2000)

    Article  Google Scholar 

  8. Dai, J.G.: On the positive Harris recurrence for multiclass queueing networks: a unified approach via fluid limit models. Ann. Appl. Probab. 5(1), 49–77 (1995)

    Article  Google Scholar 

  9. Zhang, H.Q., Hsu, G.X.: Strong approximations for priority queues: head-of-the-line-first discipline. Queueing Syst. 10(3), 213–234 (1992)

    Article  Google Scholar 

  10. Lévy, P.: Théorie de l’addition des variables aléatories. Gauthier-Villars, Paris (1937)

    Google Scholar 

  11. Lévy, P.: Procesus stochastique et mouvement Brownien. Gauthier-Villars, Paris (1948)

    Google Scholar 

  12. Csörgő, M., Révész, P.: How big are the increments of a Wiener process? Ann. Probab. 7(4), 731–737 (1979)

    Article  Google Scholar 

  13. Csörgő, M., Révész, P.: Strong Approximations in Probability and Statistics. Academic Press, New York (1981)

    Google Scholar 

  14. Iglehart, G.L.: Multiple channel queues in heavy traffic: IV. Law of the iterated logarithm. Z.Wahrscheinlichkeitstheorie verw. Geb. 17, 168–180 (1971)

    Article  Google Scholar 

  15. Minkevičius, S.: On the law of the iterated logarithm in multiserver open queueing networks. Stoch. Int. J. Probab. Stoch. Process. 86(1), 46–59 (2014)

  16. Sakalauskas, L.L., Minkevičius, S.: On the law of the iterated logarithm in open queueing networks. Eur. J. Oper. Res. 120(3), 632–640 (2000)

    Article  Google Scholar 

  17. Minkevičius, S., Steišūnas, S.: A law of the iterated logarithm for global values of waiting time in multiphase queues. Statist. Probab. Lett. 61(4), 359–371 (2003)

    Article  Google Scholar 

  18. Chen, H., Yao, D.D.: Fundamentals of Queueing Networks. Springer-Verlag, New York (2001)

    Book  Google Scholar 

  19. Chen, H., Mandelbaum, A.: Hierarchical modeling of stochastic network, part II: strong approximations. In: Yao, D.D. (Eds.) Stochastic Modeling and Analysis of Manufacturing Systems, 107–131 (1994)

  20. Strassen, V.: An invariance principle for the law of the iterated logarith. Z. Wahrscheinlichkeitstheorie verw. Geb. 3(3), 211–226 (1964)

    Article  Google Scholar 

  21. Whitt, W.: Stochastic-Process Limits. Springer, Berlin (2002)

    Google Scholar 

  22. Glynn, P.W., Whitt, W.: A central-limit-theorem version of \(L=\lambda W\). Queueing Syst. 1(2), 191–215 (1986)

    Article  Google Scholar 

  23. Glynn, P.W., Whitt, W.: Sufficient conditions for functional limit theorem versions of \(L=\lambda W\). Queueing Syst. 1(3), 279–287 (1987)

    Article  Google Scholar 

  24. Glynn, P.W., Whitt, W.: An LIL version of \(L=\lambda W\). Math. Oper. Res. 13(4), 693–710 (1988)

    Article  Google Scholar 

  25. Horváth, L.: Strong approximation of renewal processes. Stoch. Process. Appl. 18(1), 127–138 (1984)

    Article  Google Scholar 

  26. Horváth, L.: Strong approximation of extended renewal processes. Ann. Probab. 12(4), 1149–1166 (1984)

    Article  Google Scholar 

  27. Csörgő, M., Deheuvels, P., Horváth, L.: An approximation of stopped sums with applications in queueing theory. Adv. Appl. Probab. 19(3), 674–690 (1987)

    Article  Google Scholar 

  28. Csörgő, M., Horváth, L.: Weighted Approximations in Probability and Statistics. Wiley, New York (1993)

    Google Scholar 

  29. Glynn, P.W., Whitt, W.: A new view of the heavy-traffic limit for infinite-server queues. Adv. Appl. Probab. 23(1), 188–209 (1991)

    Article  Google Scholar 

  30. Zhang, H.Q., Hsu, G.X., Wang, R.X.: Strong approximations for multiple channels in heavy traffic. J. Appl. Probab. 27(3), 658–670 (1990)

    Article  Google Scholar 

  31. Glynn, P.W., Whitt, W.: Departures from many queues in series. Ann. Appl. Probab. 1(4), 546–572 (1991)

    Article  Google Scholar 

  32. Horváth, L.: Strong approximations of open oueueing networks. Math. Oper. Res. 17(2), 487–508 (1992)

    Article  Google Scholar 

  33. Zhang, H.Q.: Strong approximations of irreducible closed queueing networks. Adv. Appl. Probab. 29(2), 498–522 (1997)

    Article  Google Scholar 

  34. Mandelbaum, A., Massey, W.A.: Strong approximations for time-dependent queues. Math. Oper. Res. 20(1), 33–64 (1995)

    Article  Google Scholar 

  35. Mandelbaum, A., Massey, W.A., Reiman, M.: Strong approximations for Markovian service networks. Queueing Syst. 30, 149–201 (1998)

    Article  Google Scholar 

  36. Dai, J.G.: Stability of Fluid and Stochastic Processing Networks, vol. 9. MaPhySto Miscellanea Publication, Aarhus, Denmark (1999)

  37. Chen, H.: Rate of convergence of the fluid approximation for generalized Jackson networks. J. Appl. Probab. 33(3), 804–814 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Ward Whitt, Prof. Junfei Huang and the anonymous referees for providing constructive comments. Both authors were supported by NSFC grant 11471053. The first author also acknowledges support from NSFC grant 11101050. The second author also acknowledges support from NSF Grant CMMI 1362310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunan Liu.

Appendix: Overview

Appendix: Overview

This appendix contains additional materials supplementing the main paper. In Sect. 1 we provide an alternative definition for the one-dimensional ORM in (14). In Sect. 1 we provide the analytic solutions to the fluid Eq. (13). In Sect. 1, more numerical examples are given to supplement Sect. 5. In Sect. 1 we further analyze Corollary 1 in two cases. Finally, in Sect. 1 we prove Lemma 2.

1.1 The one-dimensional oblique reflection mapping

We now provide an alternative definition of the ORM in (14).

Definition 1

For any function \(x \in \mathbb {D}_0\), if there exists a unique pair of functions \(z, y\in \mathbb {D}_0\) satisfying

  1. (i)

    \(z(t)=x(t)+y(t)\ge 0;\)

  2. (ii)

    \(y\) is non-decreasing and \(y(0)=0\);

  3. (iii)

    \(\int _0^\infty z(t)\mathsf{d}y(t)=0\),

is called the one-dimensional oblique reflection mapping, denoted by \((z,y)=(\varPhi ,\varPsi )(x)\).

1.2 Fluid solution to (13)

We provide analytic solutions to (13) in three cases: (i) \(\rho _1> 1\), (ii) there exists an integer \(k_0: 1<k_0<K\) such that \(\sum _{l=1}^{k_0}\rho _l\le 1\) and \(\sum _{l=1}^{k_0+1}\rho _l>1\), and (iii) \(\rho <1\).

Case \((i)\): If \(\rho _1>1\), then the solution of (13) is

$$\begin{aligned} \bar{Q}_k(t)&= \mu _k \bar{Z}_k(t) = \left\{ \begin{array}{ll} (\lambda _k-\mu _k)t, &{}\quad k=1; \\ \lambda _kt, &{}\quad k=2,3,\dots ,K, \end{array} \right. \end{aligned}$$
(52)
$$\begin{aligned} \bar{B}_k(t)&= \left\{ \begin{array}{l@{\quad }l} t, &{} k=1; \\ 0, &{} k=2,3,\ldots ,K, \end{array} \right. \end{aligned}$$
(53)
$$\begin{aligned} \bar{I}_k(t)&= 0, \qquad k=1,2,\dots ,K, \end{aligned}$$
(54)

and \(\bar{X}_k(t)=\bar{Q}_k(t)\) and \(\bar{D}_1(t)=\mu _1t\) and \(\bar{D}_k(t)=0\) for all \(k=2,3,\dots ,K\).

Case \((ii)\): If there exists an integer \(k_0: 1<k_0<K\) such that \(\sum _{l=1}^{k_0}\rho _l\le 1\) and \(\sum _{l=1}^{k_0+1}\rho _l>1\), then the solution of (13) is

$$\begin{aligned} \bar{Q}_k(t)&= \mu _k \bar{Z}_k(t) = \lambda _kt-\left[ \rho _k\wedge \left( 1-\sum _{l=1}^{k-1}\rho _l\right) ^+\right] \mu _k t\nonumber \\&= \left\{ \begin{array}{l@{\quad }l} 0, &{} k=1,2,\dots ,k_0; \\ \mu _{k_0+1}\left( \sum \limits _{l=1}^{k_0+1}\rho _l-1\right) t, &{} k=k_0+1; \\ \lambda _kt, &{} k=k_0+2,k_0+3,\dots ,K, \end{array} \right. \end{aligned}$$
(55)
$$\begin{aligned} \bar{B}_k(t)&= \left[ \rho _k\wedge \left( 1-\sum \limits _{l=1}^{k-1}\rho _l\right) ^+\right] t \!=\! \left\{ \begin{array}{l@{\quad }l} \rho _kt, &{} k\!=\!1,2,\dots ,k_0; \\ \left( 1\!-\!\sum \limits _{l=1}^{k-1}\rho _l\right) t, &{} k=k_0\!+\!1; \\ 0, &{} k\!=\!k_0+2,k_0\!+\!3,\dots ,K, \end{array} \right. \end{aligned}$$
(56)
$$\begin{aligned} \bar{I}_k(t)&= \left( 1-\sum \limits _{l=1}^k\rho _l\right) ^+t= \left\{ \begin{array}{l@{\quad }l} \left( 1-\sum \limits _{l=1}^k\rho _l\right) t, &{} k\!=\!1,2,\dots ,k_0; \\ 0, &{} k\!=\!k_0+1,k_0+2,\dots ,K. \end{array} \right. \end{aligned}$$
(57)

Finally, we also note that

$$\begin{aligned} \bar{X}_k(t)\!&= \!\mu _k\left[ \rho _kt\!+\!\sum \limits _{l=1}^{k-1}\bar{B}_l(t)\!-\!t\right] \!=\!\left\{ \begin{array}{l@{\quad }l} \mu _k\left( \sum \limits _{l=1}^k\rho _l\!-\!1\right) t, &{} k\!=\!1,2,\dots ,k_0\!+\!1; \\ \lambda _kt, &{} k\!=\!k_0+2,k_0\!+\!3,\dots ,K, \end{array} \right. \nonumber \\\end{aligned}$$
(58)
$$\begin{aligned} \bar{D}_k(t)\!&= \! \mu _k\bar{B}_k(t)\!=\! \left\{ \begin{array}{l@{\quad }l} \lambda _kt, &{} k=1,2,\dots ,k_0; \\ \mu _k\left( 1-\sum \limits _{l=1}^{k-1}\rho _l\right) t, &{} k=k_0+1; \\ 0, &{} k=k_0+2,k_0+3,\dots ,K. \end{array} \right. \end{aligned}$$
(59)

Case \((iii)\): If \(\rho <1\), all fluid functions satisfy the fluid functions in case (ii) with \(k_0\) replaced by \(K\).

1.3 More numerical examples

1.3.1 A type-1 OL example

Example 3

(Discontinuities of the LIL limits in the class index) Consider a 6-queue example \(\lambda _{k}=1\), \(\mu _{k}=3\), \(c_{a,k}=c_{s,k}=1\) for all \(1\le k\le K=6\). This example belongs to the type-1 OL case because \(k_0=3\), \(\sum _{k=1}^{3} \rho _k =1\) and \(\sum _{k=1}^{4} \rho _k= 4/3>1\).

According to Theorem 4, we compute the LIL limits in Table 2 and plot these limits as functions of \(k\) in Fig. 4. The vertical line in 4 serving as a “benchmark” for \(\rho =1\) (because \(\sum _{k=1}^{3} \rho _k =1\) and \(\sum _{k=1}^{4}\rho _k > 1\)). We see that all LIL limits jump at \(k_0\) and \(k_0+1\). The LIL limits \(Q^{*}_{k}\), \(Z^{*}_{k}\), \(B^{*}_{k}\), and \(D^{*}_{k}\) all peak at \(k_0=3\) and \(k_0+1=4\), where stochastic processes \(Q_k\), \(Z_k\), \(B_k\), and \(D_k\) experiencing the largest asymptotical stochastic variability. The LIL \(I^{*}_k\) increases in \(k\) and peak at \(k=k_0=3\), it then drops to 0. This is so because the variability of \(I_k\) is cumulative (thus increasing) for \(1\le k\le k_0\) and then \(I_k\) becomes asymptotically negligible for all \(k_0< k\le K\). See Remark 5 for more discussions.

Fig. 4
figure 4

LIL limits of Example 2 as functions of \(k\), \(1\le k\le 6\), with \(k_0=3\), \(\sum _{k=1}^{3}\rho _{k}=1\) and \(\sum _{k=1}^{4}\rho _{k}>1\)

We plot the LIL limits as functions of \(k\) in Fig. 4.

1.3.2 LIL formulas for Example 2

We next provide the explicit LIL limits for Example 2. These limits are piecewise functions. The LIL limits for \(Q\) are

$$\begin{aligned} Q_{1}^{*}(\rho _{2})&= 0,\quad \text {for all}\quad 0\le \rho _{2}\le 1,\\ Q_{2}^{*}(\rho _{2})&= \sqrt{2}\cdot \mathbf{1}_{\{\rho _{2}=0.5\}} + \sqrt{1+\sqrt{0.5}+\rho _{2}}\cdot \mathbf{1}_{\{0.5<\rho _{2}\le 1\}},\\ Q_{3}^{*}(\rho _{2})&= \sqrt{2}\cdot \mathbf{1}_{\{\rho _{2}=0\}} \!+\! \sqrt{1.5\!+\!2\rho _{2}\!+\!\sqrt{0.5-\rho _{2}}}\cdot \mathbf{1}_{\{0<\rho _{2}\le 0.5\}} \!+\! \sqrt{0.5}\cdot \mathbf{1}_{\{0.5<\rho _{2}\le 1\}},\\ Q_{4}^{*}(\rho _{2})&= \sqrt{2.5}\cdot \mathbf{1}_{\{\rho _{2}=0\}} + \sqrt{0.5}\cdot \mathbf{1}_{\{0<\rho _{2}\le 1\}}. \end{aligned}$$

The LIL limits for \(Z\) are

$$\begin{aligned} Z_{1}^{*}(\rho _{2})&= 0,\quad \text {for all}\quad 0\le \rho _{2}\le 1,\\ Z_{2}^{*}(\rho _{2})&= \sqrt{1+2\rho _{2}}\cdot \mathbf{1}_{\{0.5\le \rho _{2}\le 1\}},\\ Z_{3}^{*}(\rho _{2})&= \sqrt{2+2\rho _{2}}\cdot \mathbf{1}_{\{0\le \rho _{2}\le 0.5\}} + \mathbf{1}_{\{0.5<\rho _{2}\le 1\}},\\ Z_{4}^{*}(\rho _{2})&= \sqrt{3}\cdot \mathbf{1}_{\{\rho _{2}=0\}} + \mathbf{1}_{\{0<\rho _{2}\le 1\}}. \end{aligned}$$

The LIL limits for \(B\) are

$$\begin{aligned} B_{1}^{*}(\rho _{2})&= 1,\quad \text {for all}\quad 0\le \rho _{2}\le 1,\\ B_{2}^{*}(\rho _{2})&= \sqrt{2\rho _{2}}\cdot \mathbf{1}_{\{0\le \rho _{2}< 0.5\}}+ \mathbf{1}_{\{0.5\le \rho _{2} \le 1\}},\\ B_{3}^{*}(\rho _{2})&= \sqrt{1+2\rho _{2}}\cdot \mathbf{1}_{\{0\le \rho _{2}\le 0.5\}},\\ B_{4}^{*}(\rho _{2})&= \sqrt{2}\cdot \mathbf{1}_{\{\rho _{2}=0\}}. \end{aligned}$$

The LIL limits for \(I\) are

$$\begin{aligned} I_{1}^{*}(\rho _{2})&= 1,\quad \text {for all}\quad 0\le \rho _{2}\le 1,\\ I_{2}^{*}(\rho _{2})&= \sqrt{1+2\rho _{2}}\cdot \mathbf{1}_{\{0\le \rho _{2}\le 0.5\}},\\ I_{3}^{*}(\rho _{2})&= \sqrt{2}\cdot \mathbf{1}_{\{\rho _{2}=0\}},\\ I_{4}^{*}(\rho _{2})&= 0,\quad \text {for all}\quad 0\le \rho _{2}\le 1. \end{aligned}$$

The LIL limits for \(D\) are

$$\begin{aligned} D_{1}^{*}(\rho _{2})&= \sqrt{0.5},\quad \text {for all}\quad 0\le \rho _{2}\le 1,\\ D_{2}^{*}(\rho _{2})&= \sqrt{\rho _{2}}\cdot \mathbf{1}_{\{0\le \rho _{2}<0.5\}} + \sqrt{1.5}\cdot \mathbf{1}_{\{\rho _{2}=0.5\}}+\sqrt{1+\sqrt{0.5}}\cdot \mathbf{1}_{\{0.5< \rho _{2}\le 1\}},\\ D_{3}^{*}(\rho _{2})&= \sqrt{1.5}\cdot \mathbf{1}_{\{\rho _{2} = 0\}} + \sqrt{1+2\rho _{2}+\sqrt{0.5-\rho _{2}}}\cdot \mathbf{1}_{\{0<\rho _{2}<0.5\}} + \sqrt{2}\cdot \mathbf{1}_{\{\rho _{2}=0.5\}},\\ D_{4}^{*}(\rho _{2})&= \sqrt{2}\cdot \mathbf{1}_{\{\rho _{2}=0\}}. \end{aligned}$$

1.4 More discussion on Corollary 1

Using the analytic solutions to (13), we transform the results of Corollary 1 to more detailed formulas. We consider two cases: (1) \(\rho <1\) and (2) there exists \(k_0: 1<k_0<K\) such that \(\sum _{l=1}^{k_0}\rho _l\le 1\) and \(\sum _{l=1}^{k_0+1}\rho _l> 1\).

Case 1. If \(\rho \le 1\), then \(\bar{Q}_k(t)=0\) and \(\bar{B}_k(t)=\rho _kt\) for \(k=1,2,\dots ,K\). Hence (29) and (30) are the following

$$\begin{aligned} \widetilde{X}_k(t)&\mathop {=}\limits ^\mathrm{d}\mu _k\left( \sum _{l=1}^k\rho _l-1\right) t -\sum _{l=1}^{k-1} \frac{\mu _k}{\mu _l}\widetilde{Q}_l(t)\nonumber \\&\quad +\sum _{l=1}^k\frac{\mu _k}{\mu _l} \left[ \lambda _l^{1/2}c_{a,l}W_{a,l}(t)- \lambda _l^{1/2}c_{s,l}W_{s,l}(t)\right] ,\end{aligned}$$
(60)
$$\begin{aligned} \bar{B}_k(t)-\widetilde{B}_k(t)&\mathop {=}\limits ^\mathrm{d}\rho _kt-\widetilde{B}_k(t)=\frac{1}{\mu _k}\widetilde{Q}_k(t)\nonumber \\&\quad -\frac{1}{\mu _k}\left[ \lambda _k^{1/2}c_{a,k}W_{a,k}(t)- \lambda _k^{1/2}c_{s,k}W_{s,k}(t)\right] . \end{aligned}$$
(61)

Case 2. If there exists \(1<k_0<K\) such that \(\sum _{l=1}^{k_0}\rho _l\le 1\) and \(\sum _{l=1}^{k_0+1}\rho _l> 1\), then \(\bar{Q}_k(t)=0\) and \(\bar{B}_k(t)=\rho _kt\) for \(k=1,2,\dots ,k_0\), and (60) and (61) hold for \(1,2,\dots ,k_0\). For \(k=k_0+1\), we note that \(\bar{Q}_{k_0+1}(t)=\bar{X}_{k_0+1}(t)=\mu _{k_0+1} (\sum _{l=1}^{k_0+1}\rho _l-1)t\) and \(\bar{B}_{k_0+1}(t)=(1-\sum _{l=1}^{k_0}\rho _l)t\). Hence,

$$\begin{aligned} \begin{aligned} \widetilde{X}_{k_0+1}(t)&\mathop {=}\limits ^\mathrm{d}\mu _{k_0+1}\left( \sum _{l=1}^{k_0+1}\rho _l-1\right) t\\&\quad -\sum _{l=1}^{k_0} \frac{\mu _{k_0+1}}{\mu _l} \left[ \widetilde{Q}_l(t) +\lambda _l^{1/2}c_{a,l}W_{a,l}(t)-\lambda _l^{1/2}c_{s,l}W_{s,l}(t)\right] \\&\quad +\left[ \lambda _{k_0+1}^{1/2}c_{a,k_0+1}W_{a,k_0+1}(t) -\mu _{k_0+1}^{1/2}c_{s,k_0+1}\sqrt{1\!-\!\sum _{l=1}^{k_0}\rho _i}W_{s,k_0+1}(t)\right] \!, \end{aligned} \end{aligned}$$
(62)

and

$$\begin{aligned}&\bar{B}_{k_0+1}(t)-\widetilde{B}_{k_0+1}(t)\nonumber \\&\quad =\left( 1-\sum _{l=1}^{k_0}\rho _l\right) t-\widetilde{B}_{k_0+1}(t)\nonumber \\&\quad \mathop {=}\limits ^\mathrm{d}\frac{1}{\mu _{k_0+1}}\left[ \widetilde{Q}_{k_0+1}(t) -\mu _{k_0+1}\left( \sum \limits _{l=1}^{k_0+1}\rho _l-1\right) t\right] \nonumber \\&\qquad -\frac{1}{\mu _{k_0+1}}\left[ \lambda _{k_0+1}^{1/2}c_{a,k_0+1} W_{a,k_0+1}(t)- \mu _{k_0+1}^{1/2}c_{s,k_0+1} \sqrt{1-\sum _{l=1}^{k_0}\rho _i}W_{s,k_0+1}(t)\right] .\nonumber \\ \end{aligned}$$
(63)

For \(k=k_0+i,i=2,3,\dots ,K-k_0\), \(\bar{Q}_{k_0+i}(t)=\lambda _{k_0+i}t\), \(\bar{B}_{k_0+i}(t)=0\), we have

$$\begin{aligned}&\widetilde{X}_{k_0+i}(t) \mathop {=}\limits ^\mathrm{d}\lambda _{k_0+i}t -\sum _{l=1}^{k_0}\frac{\mu _{k_0+i}}{\mu _l}\widetilde{Q}_l(t) \!-\!\frac{\mu _{k_0+i}}{\mu _{k_0+1}}\left[ \widetilde{Q}_{k_0+1}(t) -\mu _{k_0+1}\left( \sum \limits _{l=1}^{k_0+1}\rho _l-1\right) t\right] \nonumber \\&\quad -\sum _{l=k_0+2}^{k_0+i-1} \frac{\mu _{k_0+i}}{\mu _l}\left[ \widetilde{Q}_l(t)-\lambda _{l}t\right] +\sum _{l=1}^{k_0}\frac{\mu _{k_0+i}}{\mu _l} \left[ \lambda _l^{1/2}c_{a,l}W_{a,l}(t)- \lambda _l^{1/2}c_{s,l}W_{s,l}(t)\right] \nonumber \\&\quad +\frac{\mu _{k_0+i}}{\mu _{k_0+1}}\left[ \lambda _{k_0+1}^{1/2}c_{a,k_0+1} W_{a,k_0+1}(t)- \mu _{k_0+1}^{1/2}c_{s,k_0+1} \sqrt{1-\sum _{l=1}^{k_0}\rho _i}W_{s,k_0+1}(t)\right] \nonumber \\&\quad +\sum _{l=k_0+2}^{k_0+i}\frac{\mu _{k_0+i}}{\mu _l}\lambda _l^{1/2}c_{a,l} W_{a,l}(t), \end{aligned}$$
(64)

and

$$\begin{aligned} \bar{B}_{k_0+i}(t)-\widetilde{B}_{k_0+i}(t) \mathop {=}\limits ^\mathrm{d}\frac{\widetilde{Q}_{k_0+i}(t)-\lambda _{k_0+i}t}{\mu _{k_0+i}} -\frac{\lambda _{k_0+i}^{1/2}c_{a,k_0+i}W_{a,k_0+i}(t)}{\mu _{k_0+i}}. \end{aligned}$$
(65)

1.5 Proof of Lemma 2

According to (13), \(\bar{B}_k(t)=\rho _kt\) and \(\bar{X}_k(t)=-\theta _k t<0\) for \(k=1,2,\dots ,K\). Next, (27) implies that \(\widetilde{Q}_1(t)=\varPhi (\widetilde{X}_1)(t)\) is a reflected BM, where \(\widetilde{X}_1(t)=\bar{X}_1(t)+W_1(t)\) is a BM with negative drift \(-\theta _1\) and variance parameter \(\mu _1\sigma _1\). Theorem 6.2 in [18] implies that

$$\begin{aligned} \mathsf{P}\left\{ \sup _{0\le t\le T}\widetilde{Q}_1(t)\ge z\right\} \le \exp \left\{ -\frac{2\theta _1}{\mu _1^2\sigma _1^2}z\right\} \le \exp \left\{ -2\gamma z\right\} , \quad z\ge 0. \end{aligned}$$
(66)

We next consider \(k= 2, 3,\dots ,K\). For \(z\ge 0\),

$$\begin{aligned}&\mathsf{P}\left\{ \sup _{0\le t\le T}\widetilde{Q}_k(t)\ge z\right\} \nonumber \\&\quad = \mathsf{P}\left\{ \sup _{0\le t\le T}\left\{ \widetilde{X}_k(t)+\sup _{0\le s\le t}\left[ -\widetilde{X}_k(s)\right] \right\} \ge z\right\} \nonumber \\&\quad =\mathsf{P}\left\{ \sup _{0\le t\le T}\sup _{0\le s\le t}\left[ \widetilde{X}_k(t)-\widetilde{X}_k(s)\right] \ge z\right\} \nonumber \\&\quad \le \mathsf{P}\left\{ \sup _{0\le t\le T}\sup _{0\le s\le t}\left[ (\bar{X}_k(t)+W_k(t))-(\bar{X}_k(s)+W_k(s))\right] \ge \frac{z}{2}\right\} \nonumber \\&\qquad +\,\mathsf{P}\left\{ \sup _{0\le t\le T}\sup _{0\le s\le t}\left[ \sum _{l=1}^{k-1} \frac{\mu _k}{\mu _l}\widetilde{Q}_l(s)-\sum _{l=1}^{k-1} \frac{\mu _k}{\mu _l}\widetilde{Q}_l(t)\right] \ge \frac{z}{2}\right\} \nonumber \\&\quad \le \mathsf{P}\left\{ \sup _{0\le s\le T}[\bar{X}_k(s)+W_k(s)]\ge \frac{z}{2}\right\} +\mathsf{P}\left\{ \sup _{0\le s\le T}\sum _{l=1}^{k-1} \frac{\mu _k}{\mu _l}\widetilde{Q}_l(s)\ge \frac{z}{2}\right\} ,\qquad \end{aligned}$$
(67)

where the first equality holds because \(\widetilde{X}_k(0)=0\) and the first inequality holds by (29). To bound the second term in (67), we have

$$\begin{aligned} \mathsf{P}\left\{ \sup _{0\le s\le T}\sum _{l=1}^{k-1} \frac{\mu _k}{\mu _l}\widetilde{Q}_l(s)\ge \frac{z}{2}\right\}&\le \sum _{l=1}^{k-1} \mathsf{P}\left\{ \sup _{0\le s\le T} \widetilde{Q}_l(s)\ge \frac{\min \{\mu _1,\dots ,\mu _{k-1}\}}{(k-1)\mu _k}\cdot \frac{z}{2}\right\} \nonumber \\&\le \sum _{l=1}^{k-1} \mathsf{P}\left\{ \sup _{0\le s\le T} \widetilde{Q}_l(s)\ge \delta _kz\right\} \end{aligned}$$
(68)

with \(\delta _k\) given in Lemma 2.

We are now ready to prove (33) for \(2\le k\le K\). We use induction. First, when \(k=2\), using (67), (68) and the fact that \(\delta _k\le \frac{1}{2}\), we have

$$\begin{aligned}&\mathsf{P}\left\{ \sup _{0\le t\le T}\widetilde{Q}_2(t)\ge z\right\} \le \mathsf{P}\left\{ \sup _{0\le s\le T}[\bar{X}_2(s)+W_2(s)]\ge \delta _2z\right\} \\&\quad +\, \mathsf{P}\left\{ \sup _{0\le s\le T} \widetilde{Q}_1(s)\ge \delta _2z\right\} \\&\le \exp \left\{ -\frac{2\theta _2}{\mu _2^2\sigma _2^2}\delta _2z\right\} + \exp \left\{ -\frac{2\theta _1}{\mu _1^2\sigma _1^2}\delta _2z\right\} \le N_2\exp \left\{ -2\gamma \delta _2z\right\} , \end{aligned}$$

where the second inequality holds by (66) and Lemma 5.5 in [18] (with \(\bar{X}_2(t)+W_2(t)\) being a BM with negative drift \(-\theta _2\) and variance parameter \(\mu _2\sigma _2\)).

Next, assume (33) holds for classes \(2,\ldots ,k\). For class \(k+1\), we have

$$\begin{aligned}&\mathsf{P}\left\{ \sup _{0\le t\le T}\widetilde{Q}_{k+1}(t)\ge z\right\} \\&\quad \le \mathsf{P}\left\{ \sup _{0\le s\le T}[\bar{X}_{k+1}(t)+W_{k+1}(s)]\ge \delta _{k+1}z\right\} +\sum _{l=1}^k \mathsf{P}\left\{ \sup _{0\le s\le T} \widetilde{Q}_l(s)\ge \delta _{k+1}z\right\} \\&\quad \le \exp \left\{ -\frac{2\theta _{k+1}\delta _{k+1}z}{\mu _{k+1}^2\sigma _{k+1}^2}\right\} \!+\!\exp \left\{ -\frac{2\theta _1\delta _{k+1}z}{\mu _1^2\sigma _1^2}\right\} \!+\!\sum _{l=2}^k N_l\exp \left\{ -2\gamma \delta _2\delta _3\cdots \delta _l\delta _{k+1}z\right\} \\&\quad \le N_{k+1}\exp \left\{ -2\gamma \delta _2\delta _3\cdots \delta _{k+1}z\right\} =N_{k+1}\,\exp \left\{ -2\gamma \prod _{j=1}^{k+1}\delta _{j}\,z\right\} , \end{aligned}$$

where the first inequality holds by (67), (50), and the fact that \(\delta _k\le 1/2\), and the second inequality holds by the induction hypothesis and Lemma 5.5 in [18] (with \(\bar{X}_{k+1}(t)+W_{k+1}(t)\) being a BM with negative drift \(-\theta _{k+1}\) and variance parameter \(\mu _{k+1}\sigma _{k+1}\)). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Liu, Y. A law of iterated logarithm for multiclass queues with preemptive priority service discipline. Queueing Syst 79, 251–291 (2015). https://doi.org/10.1007/s11134-014-9419-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-014-9419-5

Keywords

Mathematics Subject Classification

Navigation