Skip to main content
Log in

Gibbs measures for the fertile three-state hard-core models on a Cayley tree

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We study translation-invariant splitting Gibbs measures (TISGMs, tree-indexed Markov chains) for the fertile three-state hard-core models with activity \(\lambda >0\) on the Cayley tree of order \(k\ge 1\). There are four such models: wrench, wand, hinge, and pipe. These models arise as simple examples of loss networks with nearest-neighbor exclusion. It is known that (i) for the wrench and pipe cases \(\forall \lambda >0\) and \(k\ge 1\), there exists a unique TISGM; (ii) for hinge (resp. wand) case at \(k=2\) if \(\lambda <\lambda _\mathrm{cr}=9/4\) (resp. \(\lambda <\lambda _\mathrm{cr}=1\)), there exists a unique TISGM, and for \(\lambda > 9/4\) (resp. \(\lambda >1\)), there exist three TISGMs. In this paper we generalize the result (ii) for any \(k\ge 2\), i.e., for hinge and wand cases we find the exact critical value \(\lambda _\mathrm{cr}(k)\) with properties mentioned in (ii). Moreover, we find some regions for the \(\lambda \) parameter ensuring that a given TISGM is extreme or non-extreme in the set of all Gibbs measures. For the Cayley tree of order two, we give explicit formulae and some numerical values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This remark is added according to a suggestion of the referee.

References

  1. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, London (1982)

    Google Scholar 

  2. Brightwell, G.R., Winkler, P.: Graph homomorphisms and phase transitions. J. Comb. Theory Ser. B 77(2), 221–262 (1999)

    Article  Google Scholar 

  3. Brightwell, G.R., Winkler, P.: Hard constraints and the Bethe lattice: adventures at the interface of combinatorics and statistical physics. In: Proceedings of the ICM 2002, vol. IIIi, pp. 605–624. Higher Education Press, Beijing (2002)

  4. Brightwell, G.R., Häggström, O., Winkler, P.: Nonmonotonic behavior in hard-core and Widom–Rowlinson models. J. Stat. Phys. 94(3–4), 415–435 (1999)

    Article  Google Scholar 

  5. Formentin, M., Külske, C.: A symmetric entropy bound on the non-reconstruction regime of Markov chains on Galton–Watson trees. Electron. Commun. Probab. 14, 587–596 (2009)

    Google Scholar 

  6. Galvin, D., Kahn, J.: On phase transition in the hard-core model on \(Z^d\). Comb. Prob. Comp. 13, 137–164 (2004)

    Article  Google Scholar 

  7. Galvin, D., Martinelli, F., Ramanan, K., Tetali, P.: The multistate hard core model on a regular tree. SIAM J. Discret. Math. 25(2), 894–915 (2011)

    Article  Google Scholar 

  8. Kelly, F.: Loss networks. Ann. Appl. Probab. 1(3), 319–378 (1991)

    Article  Google Scholar 

  9. Kesten, H.: Quadratic transformations: a model for population growth. I. Adv. Appl. Probab. 2, 1–82 (1970)

    Article  Google Scholar 

  10. Kesten, H., Stigum, B.P.: Additional limit theorem for indecomposable multi-dimensional Galton–Watson processes. Ann. Math. Stat. 37, 1463–1481 (1966)

    Article  Google Scholar 

  11. Khakimov, R.M.: Translation-invariant Gibbs measures for the fertile HC-models with three state on a Cayley tree. ArXiv:1406.0473v1

  12. Louth, G.: Stochastic networks: complexity, dependence and routing. Cambridge University (thesis) (1990)

  13. Luen, B., Ramanan, K., Ziedins, I.: Nonmonotonicity of phase transitions in a loss network with controls. Ann. Appl. Probab. 16(3), 1528–1562 (2006)

    Article  Google Scholar 

  14. Mazel, A.E., Suhov, YuM: Random surfaces with two-sided constraints: an application of the theory of dominant ground states. J. Stat. Phys. 64, 111–134 (1991)

    Article  Google Scholar 

  15. Mitra, P., Ramanan, K., Sengupta, A., Ziedins, I.: Markov random field models of multicasting in tree networks. Adv. Appl. Probab. 34(1), 1–27 (2002)

    Article  Google Scholar 

  16. Martin, J.B., Rozikov, U.A., Suhov, Y.M.: A three state hard-core model on a Cayley tree. J. Nonlinear Math. Phys. 12(3), 432–448 (2005)

    Article  Google Scholar 

  17. Martinelli, F., Sinclair, A., Weitz, D.: Fast mixing for independent sets, coloring and other models on trees. Random Struct. Algoritms 31, 134–172 (2007)

    Article  Google Scholar 

  18. Mossel, E.: Survey: Information Flow on Trees. In: Graphs, morphisms and statistical physics. DIMACS Ser. Discrete Mathematics Theoretical Computer Science, vol. 63, pp. 155–170. American Mathematical Society, Providence (2004)

  19. Rozikov, U.A.: Gibbs measures on Cayley trees, p. 404. World Sci. Publ., Singapore (2013)

    Book  Google Scholar 

  20. Rozikov, U.A., Shoyusupov, ShA: Fertile three state HC models on Cayley tree. Theor. Math. Phys. 156(3), 1319–1330 (2008)

    Article  Google Scholar 

  21. Suhov, YuM, Rozikov, U.A.: A hard-core model on a Cayley tree: an example of a loss network. Queueing Syst. 46(1/2), 197–212 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

U. A. Rozikov thanks the Université du Sud Toulon Var, the Centre de Physique Théorique for support of his many visits, and Aix-Marseille University Institute for Advanced Study IMéRA (Marseille, France) for support by a residency scheme. He also thanks the Ruhr-University Bochum (Germany) for financial support and hospitality. We thank both referees for careful reading of the manuscript and for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Rozikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozikov, U.A., Khakimov, R.M. Gibbs measures for the fertile three-state hard-core models on a Cayley tree. Queueing Syst 81, 49–69 (2015). https://doi.org/10.1007/s11134-015-9450-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-015-9450-1

Keywords

Mathematics Subject Classification

Navigation