Skip to main content
Log in

Time-varying tandem queues with blocking: modeling, analysis, and operational insights via fluid models with reflection

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

In this paper, we develop time-varying fluid models for tandem networks with blocking. Beyond having their own intrinsic value, these mathematical models are also limits of corresponding many-server stochastic systems. We begin by analyzing a two-station tandem network with a general time-varying arrival rate, a finite waiting room before the first station, and no waiting room between the stations. In this model, customers that are referred from the first station to the second when the latter is saturated (blocked) are forced to wait in the first station while occupying a server there. The finite waiting room before the first station causes customer loss and, therefore, requires reflection analysis. We then specialize our model to a single station (many-server fluid limit of the \(G_t/M/N/(N +H)\) queue), generalize it to k stations in tandem, and allow finite internal waiting rooms. Our models yield operational insights into network performance, specifically on the effects of line length, bottleneck location, waiting room size, and the interaction among these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Afèche, P., Araghi, M., Baron, O.: Customer acquisition, retention, and queueing-related service quality: optimal advertising, staffing, and priorities for a call center. Manuf. Serv. Oper. Manag. 19(4), 674–691 (2017)

    Article  Google Scholar 

  2. Akyildiz, I., von Brand, H.: Exact solutions for networks of queues with blocking-after-service. Theor. Comput. Sci. 125(1), 111–130 (1994)

    Article  Google Scholar 

  3. Arendt, K., Sadosty, A., Weaver, A., Brent, C., Boie, E.: The left-without-being-seen patients: what would keep them from leaving? Ann. Emerg. Med. 42(3), 317–IN2 (2003)

    Article  Google Scholar 

  4. Armony, M., Israelit, S., Mandelbaum, A., Marmor, Y., Tseytlin, Y., Yom-Tov, G.: On patient flow in hospitals: a data-based queueing-science perspective. Stoch. Syst. 5(1), 146–194 (2015)

    Article  Google Scholar 

  5. Avi-Itzhak, B.: A sequence of service stations with arbitrary input and regular service times. Manag. Sci. 11(5), 565–571 (1965)

    Article  Google Scholar 

  6. Avi-Itzhak, B., Levy, H.: A sequence of servers with arbitrary input and regular service times revisited: in memory of Micha Yadin. Manag. Sci. 41(6), 1039–1047 (1995)

    Article  Google Scholar 

  7. Avi-Itzhak, B., Yadin, M.: A sequence of two servers with no intermediate queue. Manag. Sci. 11(5), 553–564 (1965)

    Article  Google Scholar 

  8. Baker, D., Stevens, C., Brook, R.: Patients who leave a public hospital emergency department without being seen by a physician: causes and consequences. JAMA 266(8), 1085–1090 (1991)

    Article  Google Scholar 

  9. Balsamo, S., de Nitto Personè, V.: A survey of product form queueing networks with blocking and their equivalences. Ann. Oper. Res. 48(1), 31–61 (1994)

    Article  Google Scholar 

  10. Balsamo, S., de Nitto Personé, V., Onvural, R.: Analysis of Queueing Networks with Blocking. Springer, Berlin (2001)

    Book  Google Scholar 

  11. Borisov, I., Borovkov, A.: Asymptotic behavior of the number of free servers for systems with refusals. Theory Probab. Appl. 25(3), 439–453 (1981)

    Article  Google Scholar 

  12. Borovkov, A.: Stochastic Processes in Queueing Theory. Springer, Berlin (2012)

    Google Scholar 

  13. Brandwajn, A., Jow, Y.: An approximation method for tandem queues with blocking. Oper. Res. 36(1), 73–83 (1988)

    Article  Google Scholar 

  14. Bretthauer, K., Heese, H., Pun, H., Coe, E.: Blocking in healthcare operations: a new heuristic and an application. Prod. Oper. Manag. 20(3), 375–391 (2011)

    Article  Google Scholar 

  15. Buzacott, J., Shanthikumar, J.: Stochastic Models of Manufacturing Systems. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  16. Chen, H., Yao, D.: Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization. Springer, Berlin (2013)

    Google Scholar 

  17. Cohen, I., Mandelbaum, A., Zychlinski, N.: Minimizing mortality in a mass casualty event: fluid networks in support of modeling and staffing. IIE Trans. 46(7), 728–741 (2014)

    Article  Google Scholar 

  18. Conway, R., Maxwell, W., McClain, J., Thomas, L.: The role of work-in-process inventory in serial production lines. Oper. Res. 36(2), 229–241 (1988)

    Article  Google Scholar 

  19. Dallery, Y., Gershwin, S.: Manufacturing flow line systems: a review of models and analytical results. Queueing Syst. 12(1–2), 3–94 (1992)

    Article  Google Scholar 

  20. Eick, S., Massey, W., Whitt, W.: \({M}_t/{G}/\infty \) queues with sinusoidal arrival rates. Manag. Sci. 39(2), 241–252 (1993)

    Article  Google Scholar 

  21. El-Darzi, E., Vasilakis, C., Chaussalet, T., Millard, P.: A simulation modelling approach to evaluating length of stay, occupancy, emptiness and bed blocking in a hospital geriatric department. Health Care Manag. Sci. 1(2), 143–149 (1998)

    Article  Google Scholar 

  22. Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley, New York (2009)

    Google Scholar 

  23. Feldman, Z., Mandelbaum, A., Massey, W., Whitt, W.: Staffing of time-varying queues to achieve time-stable performance. Manag. Sci. 54(2), 324–338 (2008)

    Article  Google Scholar 

  24. Filippov, A.: Differential Equations with Discontinuous Righthand Sides: Control Systems. Springer, Berlin (2013)

    Google Scholar 

  25. Garnett, O., Mandelbaum, A., Reiman, M.: Designing a call center with impatient customers. Manuf. Serv. Oper. Manag. 4(3), 208–227 (2002)

    Article  Google Scholar 

  26. Gershwin, S.: An efficient decomposition method for the approximate evaluation of tandem queues with finite storage space and blocking. Oper. Res. 35(2), 291–305 (1987)

    Article  Google Scholar 

  27. Glynn, P., Whitt, W.: Departures from many queues in series. Ann. Appl. Probab. 1(4), 546–572 (1991)

    Article  Google Scholar 

  28. Grassmann, W., Drekic, S.: An analytical solution for a tandem queue with blocking. Queueing Syst. 36(1–3), 221–235 (2000)

    Article  Google Scholar 

  29. Green, L., Kolesar, P., Whitt, W.: Coping with time-varying demand when setting staffing requirements for a service system. Prod. Oper. Manag. 16(1), 13–39 (2007)

    Article  Google Scholar 

  30. Harrison, J.: Assembly-like queues. J. Appl. Probab. 10(02), 354–367 (1973)

    Article  Google Scholar 

  31. Harrison, J.: Brownian Motion and Stochastic Flow Systems. Wiley, New York (1985)

    Google Scholar 

  32. He, B., Liu, Y., Whitt, W.: Staffing a service system with non-Poisson non-stationary arrivals. Probab. Eng. Inf. Sci. 30(4), 593–621 (2016)

    Article  Google Scholar 

  33. Hillier, F., Boling, R.: Finite queues in series with exponential or Erlang service times—a numerical approach. Oper. Res. 15(2), 286–303 (1967)

    Article  Google Scholar 

  34. Katsaliaki, K., Brailsford, S., Browning, D., Knight, P.: Mapping care pathways for the elderly. J. Health Organ. Manag. 19(1), 57–72 (2005)

    Article  Google Scholar 

  35. Kelly, F.: Blocking, reordering, and the throughput of a series of servers. Stoch. Process. Appl. 17(2), 327–336 (1984)

    Article  Google Scholar 

  36. Koizumi, N., Kuno, E., Smith, T.: Modeling patient flows using a queuing network with blocking. Health Care Manag. Sci. 8(1), 49–60 (2005)

    Article  Google Scholar 

  37. Langaris, C., Conolly, B.: On the waiting time of a two-stage queueing system with blocking. J. Appl. Probab. 21(03), 628–638 (1984)

    Article  Google Scholar 

  38. Leachman, R., Gascon, A.: A heuristic scheduling policy for multi-item, single-machine production systems with time-varying, stochastic demands. Manag. Sci. 34(3), 377–390 (1988)

    Article  Google Scholar 

  39. Li, A., Whitt, W.: Approximate blocking probabilities in loss models with independence and distribution assumptions relaxed. Perform. Eval. 80, 82–101 (2014)

    Article  Google Scholar 

  40. Li, A., Whitt, W., Zhao, J.: Staffing to stabilize blocking in loss models with time-varying arrival rates. Probab. Eng. Inf. Sci. 30(02), 185–211 (2016)

    Article  Google Scholar 

  41. Li, J., Meerkov, S.: Production Systems Engineering. Springer, Berlin (2009)

    Book  Google Scholar 

  42. Liu, Y., Whitt, W.: Large-time asymptotics for the \({G}_t/{M}_t/s_t + {GI}_t\) many-server fluid queue with abandonment. Queueing Syst. 67(2), 145–182 (2011)

    Article  Google Scholar 

  43. Liu, Y., Whitt, W.: A network of time-varying many-server fluid queues with customer abandonment. Oper. Res. 59(4), 835–846 (2011)

    Article  Google Scholar 

  44. Liu, Y., Whitt, W.: The \({G}_t/{GI}/s_t + {GI}\) many-server fluid queue. Queueing Syst. 71(4), 405–444 (2012)

    Article  Google Scholar 

  45. Liu, Y., Whitt, W.: A many-server fluid limit for the \(G_t/GI/s_t+GI\) queueing model experiencing periods of overloading. Oper. Res. Lett. 40(5), 307–312 (2012)

    Article  Google Scholar 

  46. Liu, Y., Whitt, W.: Many-server heavy-traffic limit for queues with time-varying parameters. Ann. Appl. Probab. 24(1), 378–421 (2014)

    Article  Google Scholar 

  47. Ma, N., Whitt, W.: Efficient simulation of non-Poisson non-stationary point processes to study queueing approximations. Stat. Probab. Lett. 109, 202–207 (2016)

    Article  Google Scholar 

  48. Mandelbaum, A., Massey, W., Reiman, M.: Strong approximations for Markovian service networks. Queueing Syst. 30(1–2), 149–201 (1998)

    Article  Google Scholar 

  49. Mandelbaum, A., Massey, W., Reiman, M., Rider, B.: Time varying multiserver queues with abandonment and retrials. In: Proceedings of the 16th International Teletraffic Conference (1999)

  50. Mandelbaum, A., Pats, G.: State-dependent queues: approximations and applications. Stoch. Netw. 71, 239–282 (1995)

    Article  Google Scholar 

  51. Mandelbaum, A., Pats, G.: State-dependent stochastic networks. Part I. Approximations and applications with continuous diffusion limits. Ann. Appl. Probab. 8(2), 569–646 (1998)

    Article  Google Scholar 

  52. Martin, J.: Large tandem queueing networks with blocking. Queueing Syst. 41(1–2), 45–72 (2002)

    Article  Google Scholar 

  53. Meerkov, S., Yan, C.B.: Production lead time in serial lines: evaluation, analysis, and control. IEEE Trans. Autom. Sci. Eng. 13(2), 663–675 (2016)

    Article  Google Scholar 

  54. Millhiser, W., Burnetas, A.: Optimal admission control in series production systems with blocking. IIE Trans. 45(10), 1035–1047 (2013)

    Article  Google Scholar 

  55. Nahmias, S., Cheng, Y.: Production and Operations Analysis, vol. 5. McGraw-Hill, New York (2009)

    Google Scholar 

  56. Namdaran, F., Burnet, C., Munroe, S.: Bed blocking in Edinburgh hospitals. Health Bull. 50(3), 223–227 (1992)

    Google Scholar 

  57. Oliver, R., Samuel, A.: Reducing letter delays in post offices. Oper. Res. 10(6), 839–892 (1962)

    Article  Google Scholar 

  58. Osorio, C., Bierlaire, M.: An analytic finite capacity queueing network model capturing the propagation of congestion and blocking. Eur. J. Oper. Res. 196(3), 996–1007 (2009)

    Article  Google Scholar 

  59. Pang, G., Whitt, W.: Heavy-traffic limits for many-server queues with service interruptions. Queueing Syst. 61(2), 167–202 (2009)

    Article  Google Scholar 

  60. Pender, J.: Nonstationary loss queues via cumulant moment approximations. Probab. Eng. Inf. Sci. 29(1), 27–49 (2015)

    Article  Google Scholar 

  61. Pender, J., Ko, Y.: Approximations for the queue length distributions of time-varying many-server queues. INFORMS J. Comput. 29(4), 688–704 (2017)

    Article  Google Scholar 

  62. Perros, H.: Queueing Networks with Blocking. Oxford University Press Inc, Oxford (1994)

    Google Scholar 

  63. Prabhu, N.: Transient behaviour of a tandem queue. Manag. Sci. 13(9), 631–639 (1967)

    Article  Google Scholar 

  64. Reed, J., Ward, A., Zhan, D.: On the generalized drift Skorokhod problem in one dimension. J. Appl. Probab. 50(1), 16–28 (2013)

    Article  Google Scholar 

  65. Rubin, S., Davies, G.: Bed blocking by elderly patients in general-hospital wards. Age Ageing 4(3), 142–147 (1975)

    Article  Google Scholar 

  66. Srikant, R., Whitt, W.: Simulation run lengths to estimate blocking probabilities. ACM Trans. Model. Comput. Simul. (TOMACS) 6(1), 7–52 (1996)

    Article  Google Scholar 

  67. Takahashi, Y., Miyahara, H., Hasegawa, T.: An approximation method for open restricted queueing networks. Oper. Res. 28(3–part–i), 594–602 (1980)

    Article  Google Scholar 

  68. Tolio, T., Gershwin, S.: Throughput estimation in cyclic queueing networks with blocking. Ann. Oper. Res. 79, 207–229 (1998)

    Article  Google Scholar 

  69. Travers, C., McDonnell, G., Broe, G., Anderson, P., Karmel, R., Duckett, S., Gray, L.: The acute-aged care interface: exploring the dynamics of bed blocking. Aust. J. Ageing 27(3), 116–120 (2008)

    Article  Google Scholar 

  70. Vandergraft, J.: A fluid flow model of networks of queues. Manag. Sci. 29(10), 1198–1208 (1983)

    Article  Google Scholar 

  71. van Vuuren, M., Adan, I., Resing-Sassen, S.: Performance analysis of multi-server tandem queues with finite buffers and blocking. OR Spectr. 27(2–3), 315–338 (2005)

    Article  Google Scholar 

  72. Wenocur, M.: A production network model and its diffusion approximation. Technical report, DTIC Document (1982)

  73. Whitt, W.: The best order for queues in series. Manag. Sci. 31(4), 475–487 (1985)

    Article  Google Scholar 

  74. Whitt, W.: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and their Application to Queues. Springer, Berlin (2002)

    Google Scholar 

  75. Whitt, W.: Efficiency-driven heavy-traffic approximations for many-server queues with abandonments. Manag. Sci. 50(10), 1449–1461 (2004)

    Article  Google Scholar 

  76. Whitt, W.: Two fluid approximations for multi-server queues with abandonments. Oper. Res. Lett. 33(4), 363–372 (2005)

    Article  Google Scholar 

  77. Whitt, W.: Fluid models for multiserver queues with abandonments. Oper. Res. 54(1), 37–54 (2006)

    Article  Google Scholar 

  78. Whitt, W.: What you should know about queueing models to set staffing requirements in service systems. Nav. Res. Logist. (NRL) 54(5), 476–484 (2007)

    Article  Google Scholar 

  79. Whitt, W.: OM forum—offered load analysis for staffing. Manuf. Serv. Oper. Manag. 15(2), 166–169 (2013)

    Article  Google Scholar 

  80. Yom-Tov, G., Mandelbaum, A.: Erlang-R: a time-varying queue with reentrant customers, in support of healthcare staffing. Manuf. Serv. Oper. Manag. 16(2), 283–299 (2014)

    Article  Google Scholar 

  81. Zychlinski, N., Mandelbaum, A., Momčilović, P., Cohen, I.: Bed blocking in hospitals due to scarce capacity in geriatric institutions—cost minimization via fluid models. Working paper (2017)

Download references

Acknowledgements

The authors thank Junfei Huang for valuable discussions. The work of A.M. has been partially supported by BSF Grant 2014180 and ISF Grants 357/80 and 1955/15. The work of P.M. has been partially supported by NSF Grant CMMI-1362630 and BSF Grant 2014180. The work of N.Z. has been partially supported by the Israeli Ministry of Science, Technology and Space and the Technion–Israel Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noa Zychlinski.

Additional information

Dedicated to Ward Whitt, on the occasion of his 75th birthday, in gratitude for his inspiring scholarship, and long-lasting leadership, friendship, and mentorship.

Appendices

Appendix A: Proof of Theorem 1

Let T be an arbitrary positive constant. Using the Lipschitz property (Appendix C) and subtracting the equation for r in (10) from the equation for \(r^{\eta }\) in (9) yields that

$$\begin{aligned}&\left||r_1^{\eta } - r_1\right||_T \vee \left||r_2^{\eta } - r_2\right||_T \le G\Bigg [ \left| r_1^{\eta }(0) - r_1(0)\right| + \Bigg \vert \Bigg \vert \int _0^{\cdot }{\lambda (u)\,\mathrm {d}u} - \eta ^{-1}A^{\eta }(\cdot )\Bigg \vert \Bigg \vert _T\nonumber \\&+ \Bigg \vert \Bigg \vert \eta ^{-1}D_1\left( \eta p\mu _1\int _0^{\cdot }{\left[ \Big (N_1 + H - r_1^{\eta }(u)\Big )\wedge \Big (N_1-b^{\eta }(u)\Big )\right] }\,\mathrm {d}u\right) \nonumber \\&- p\mu _1\int _0^{\cdot }{\left[ \left( N_1 + H - r_1^{\eta }(u)\right) \wedge \left( N_1-b^{\eta }(u)\right) \right] \,\mathrm {d}u}\Bigg \vert \Bigg \vert _T \nonumber \\&+ \Bigg \vert \Bigg \vert \eta ^{-1}D_3\left( \eta (1-p)\mu _1\int _0^{\cdot }{\left[ \left( N_1 + H - r_1^{\eta }(u)\right) \wedge \left( N_1-b^{\eta }(u)\right) \right] }\,\mathrm {d}u\right) \nonumber \\&- (1-p)\mu _1\int _0^{\cdot }{\left[ \Big (N_1 + H - r_1^{\eta }(u)\Big )\wedge \left( N_1-b^{\eta }(u)\right) \right] \,\mathrm {d}u}\Bigg \vert \Bigg \vert _T\nonumber \\&+ \Bigg \vert \Bigg \vert \mu _1 \int _0^{\cdot }\left[ \Big (N_1 + H - r_1^{\eta }(u)\Big )\wedge \left( N_1-b^{\eta }(u)\right) \right. \nonumber \\&\left. - \left( N_1 + H - r_1(u)\right) \wedge \Big (N_1-b(u)\Big )\right] \,\mathrm {d}u\Bigg \vert \Bigg \vert _T\Bigg ] \,\vee \nonumber \\&G \Bigg [\left| r_2^{\eta }(0) - r_2(0)\right| + \left|| \int _0^{\cdot }{\lambda (u)\,\mathrm {d}u} - \eta ^{-1}A^{\eta }(\cdot )\right||_T \nonumber \\&+ \Bigg \vert \Bigg \vert \eta ^{-1}D_3\Bigg (\eta (1-p)\mu _1\int _0^{\cdot }{\left[ \left( N_1 + H - r_1^{\eta }(u)\right) \wedge \left( N_1-b^{\eta }(u)\right) \right] }\,\mathrm {d}u\Bigg ) \nonumber \\&- (1-p)\mu _1\int _0^{\cdot }{\left[ \left( N_1 + H - r_1^{\eta }(u)\right) \wedge \left( N_1-b^{\eta }(u)\right) \right] \,\mathrm {d}u}\Bigg \vert \Bigg \vert _T \nonumber \\&+ \Bigg \vert \Bigg \vert \eta ^{-1}D_2\left( \eta \mu _2\int _0^{\cdot }{\left[ N_2 \wedge (r_1^{\eta }(u) - r_2^{\eta }(u) + N_2)\right] }\,\mathrm {d}u\right) \nonumber \\&- \mu _2\int _0^{\cdot }{\left[ N_2 \wedge (r_1^{\eta }(u) - r_2^{\eta }(u) + N_2)\right] \, \mathrm {d}u}\Bigg \vert \Bigg \vert _T\nonumber \\&+ \Bigg \vert \Bigg \vert (1-p)\mu _1 \int _0^{\cdot }\left[ \left( N_1 + H - r_1^{\eta }(u)\right) \wedge \left( N_1-b^{\eta }(u)\right) \right. \nonumber \\&\left. -\left( N_1 + H - r_1(u)\right) \wedge \left( N_1-b(u)\right) \right] \,\mathrm {d}u\Bigg \vert \Bigg \vert _T \nonumber \\&+ \Bigg \vert \Bigg \vert \mu _2\int _0^{\cdot }\left[ \left( N_2 \wedge \big (r_1^{\eta }(u) - r_2^{\eta }(u) + N_2\big )\right) \right. \nonumber \\&\left. - \left( N_2 \wedge (r_1(u) - r_2(u)+N_2)\right) \right] \,\mathrm {d}u \Bigg \vert \Bigg \vert _T\Bigg ], \end{aligned}$$
(20)

where G is the Lipschitz constant.

The first, second, sixth, and seventh terms on the right-hand side converge to zero by the conditions of the theorem. For proving convergence to zero of the third, fourth, eighth, and ninth terms, we use Lemma 1 in Appendix D. By the FSLLN for Poisson processes,

$$\begin{aligned} \sup _{0 \le u \le t}\left| \eta ^{-1}D(\eta u)- u\right| \rightarrow 0, \quad \forall t \ge 0 \quad a.s. \end{aligned}$$

Note that the functions \(p\mu _1\int _0^{t}{\left[ \left( N_1+H - r_1^{\eta }(u)\right) \wedge \left( N_1-b^{\eta }(u)\right) \right] }\,\mathrm {d}u\) and \(\mu _2\int _0^{t}{\left[ N_2 \wedge \Big (r_1^{\eta }(u) - r_2^{\eta }(u) + N_2\Big )\right] \,\mathrm {d}u}\) are bounded by \(p\mu _1 \cdot (N_1 + H) \cdot T\) and \(\mu _2 \cdot N_2 \cdot T\), respectively, for \(0 \le p \le 1\) and \(t \in [0, T]\). This, together with Lemma 1, implies that the third, fourth, eighth, and ninth terms in (20) converge to 0.

We get that

$$\begin{aligned}&\left||r_1^{\eta } - r_1\right||_T \vee \left||r_2^{\eta } - r_2\right||_T \nonumber \\&\le \left[ \epsilon _1^{\eta }(T) + G\mu _1 \left||\int _0^{\cdot }{\left[ \left( N_1 + H - r_1^{\eta }(u)\right) \wedge \left( N_1-b^{\eta }(u)\right) - \left( N_1 + H - r_1(u)\right) \wedge \left( N_1-b(u)\right) \right] }\,\mathrm {d}u\right||_T \right] \, \vee \nonumber \\&\Bigg [\epsilon _2^{\eta }(T) + G (1-p)\mu _1 \left||\int _0^{\cdot }{\left[ \left( N_1 + H - r_1^{\eta }(u)\right) \wedge \left( N_1-b^{\eta }(u)\right) - \left( N_1 + H - r_1(u)\right) \wedge \left( N_1-b(u)\right) \right] }\,\mathrm {d}u\right||_T \nonumber \\&\ \ \ +G\mu _2\left||\int _0^{\cdot }{{\left[ N_2 \wedge (r_1^{\eta }(u) - r_2^{\eta }(u) + N_2)\right] - \left[ N_2 \wedge (r_1(u) - r_2(u) + N_2)\right] \,\mathrm {d}u}}\right||_T \Bigg ] \nonumber \\ \le&\left[ \epsilon _1^{\eta }(T) +G\mu _1 \left||\int _0^{\cdot }{\left[ r_1^{\eta }(u) - r_1(u) \right] }\,\mathrm {d}u\right||_T +G\mu _1 \left||\int _0^{\cdot }{\left[ b^{\eta }(u) - b(u)\right] }\,\mathrm {d}u\right||_T\right] \, \vee \nonumber \\&\quad \Bigg [\epsilon _2^{\eta }(T)+ G(1-p)\mu _1 \left||\int _0^{\cdot }{\left[ r_1^{\eta }(u) - r_1(u) \right] }\,\mathrm {d}u\right||_T \nonumber \\&\quad +G(1-p)\mu _1 \left||\int _0^{\cdot }{\left[ b^{\eta }(u) - b(u)\right] }\,\mathrm {d}u\right||_T \nonumber \\&\ \ \ + G\mu _2\left||\int _0^{\cdot }{{\left[ r_1^{\eta }(u) - r_1(u) \right] \,\mathrm {d}u}}\right||_T + G\mu _2 \left||\int _0^{\cdot }{{\left[ r_2^{\eta }(u) - r_2(u)\right] \,\mathrm {d}u}}\right||_T\Bigg ] \nonumber \\ \le&\left[ \epsilon _1^{\eta }(T) + G\mu _1 \int _0^{T}{\left||r_1^{\eta } - r_1\right|| _u}\,\mathrm {d}u +G\mu _1 \int _0^{T}{\left||b^{\eta } - b\right||_u\,\mathrm {d}u}\right] \, \vee \nonumber \\&\Bigg [\epsilon _2^{\eta }(T)+G\mu _1 \int _0^{T}{\left||r_1^{\eta } - r_1 \right||_u\,\mathrm {d}u} +G\mu _1 \int _0^{T}{\left||b^{\eta } - b\right||_u\,\mathrm {d}u} \nonumber \\&\ \ \ + G \mu _2\int _0^{T}{{\left||r_1^{\eta } - r_1\right||_u\,\mathrm {d}u}} + G\mu _2 \int _0^{T}{{\left||r_2^{\eta } - r_2\right||_u\,\mathrm {d}u}}\Bigg ], \end{aligned}$$
(21)

where \(\epsilon _1^{\eta }(T)\) bounds the sum of the first four terms on the right-hand side of (20), and \(\epsilon _2^{\eta }(T)\) bounds the sum of the sixth to ninth terms; these two quantities \(\epsilon _1^{\eta }(T)\) and \(\epsilon _2^{\eta }(T)\) converge to zero, as \(\eta \rightarrow \infty \). The second inequality in (21) is obtained by using the inequalities \(| a \wedge b - a \wedge c | \le | b-c |\) and \(| a \wedge b - c \wedge d | \le | a-c | + |b-d|\) for any a, b, c, and d. The third equality in (21) is because \(0\le p \le 1\).

We now use

$$\begin{aligned} \int _0^{T}{\left||b^{\eta } - b\right||_u\,\mathrm {d}u}&= \int _0^{T}{\left||\left( r_1^{\eta } - r_2^{\eta }\right) ^+ - \left( r_1 - r_2\right) ^+\right||_u\,\mathrm {d}u} \nonumber \\&= \int _0^{T}{\left||r_1^{\eta } - r_1^{\eta } \wedge r_2^{\eta } - r_1 + r_1 \wedge r_2\right||_u\,\mathrm {d}u} \nonumber \\&\le \int _0^{T}{\Big [\left||r_1^{\eta } - r_1\right||_u +\left||r_1^{\eta } \wedge r_2^{\eta } - r_1 \wedge r_2\right||_u\Big ]\,\mathrm {d}u} \nonumber \\&\le \int _0^{T}{\Big [2\left||r_1^{\eta } - r_1\right||_u +\left||r_2^{\eta } - r_2\right||_u\Big ]\,\mathrm {d}u}\nonumber \\&= 2\int _0^{T}{\left||r_1^{\eta } - r_1\right||_u\,\mathrm {d}u} + \int _0^{T}{\left||r_2^{\eta } - r_2\right||_u\,\mathrm {d}u}. \end{aligned}$$
(22)

From (21) and (22), we get that

$$\begin{aligned}&\left||r_1^{\eta } - r_1\right||_T \vee \left||r_2^{\eta } - r_2\right||_T\nonumber \\&\le \left[ \epsilon _1^{\eta }(T) \vee \epsilon _2^{\eta }(T)\right] + G\left( 3 \mu _1 + \mu _2\right) \int _0^{T}{\left||r_1^{\eta } - r_1\right||_u\,\mathrm {d}u} + G\left( \mu _1 \vee \mu _2\right) \int _0^{T}{\left||r_2^{\eta } - r_2\right||_u\,\mathrm {d}u}\nonumber \\&\le \left[ \epsilon _1^{\eta }(T) \vee \epsilon _2^{\eta }(T)\right] + 2G\left( 3\mu _1 \vee \mu _2\right) \left[ \int _0^{T}{\left||r_1^{\eta } - r_1\right||_u\,\mathrm {d}u} + \int _0^{T}{\left||r_2^{\eta } - r_2\right||_u\,\mathrm {d}u}\right] \nonumber \\&\le \left[ \epsilon _1^{\eta }(T) \vee \epsilon _2^{\eta }(T)\right] + 4G\left( 3\mu _1 \vee \mu _2\right) \left[ \int _0^{T}{\left||r_1^{\eta } - r_1\right||_u\,\mathrm {d}u} \vee \int _0^{T}{\left||r_2^{\eta } - r_2\right||_u\,\mathrm {d}u}\right] \nonumber \\&\le \left[ \epsilon _1^{\eta }(T) \vee \epsilon _2^{\eta }(T)\right] + 4G\left( 3\mu _1 \vee \mu _2\right) \left[ \int _0^{T}{\left||r_1^{\eta } - r_1\right||_u \vee \left||r_2^{\eta } - r_2\right||_u\,\mathrm {d}u}\right] . \end{aligned}$$
(23)

The first equality in (23) is obtained by using the inequality \((a+b) \vee (c+d) \le a \vee c + b \vee d\), for any a, b, c, and d. Applying Gronwall’s inequality [22] to (23) completes the proof for both the existence and uniqueness of r.

Appendix B: Proof of Proposition 1

We begin by proving that the solution for (11) satisfies, for \(t \ge 0\),

$$\begin{aligned} l(t)&= \int _0^t{1_{\left\{ x_1(u) \ge \, N_1+H\right\} }\cdot 1_{\left\{ x_1(u)+ x_2(u)< N_1 + N_2+H\right\} }\left[ \lambda (u) - l_1(u)\right] ^{+} \,\mathrm {d}u} \, \nonumber \\&\quad + \int _0^t{1_{\left\{ x_1(u) < \, N_1+H\right\} }\cdot 1_{\left\{ x_1(u)+ x_2(u) \ge N_1 + N_2+H\right\} }\left[ \lambda (u) - l_2(u)\right] ^{+} \,\mathrm {d}u}\nonumber \\&\quad + \int _0^t{1_{\big \{x_1(u) \ge \, N_1+H\big \}}\cdot 1_{\big \{x_1(u)+ x_2(u) \ge N_1 + N_2 + H\big \}}} \Big [\lambda (u) - l_1(u) \wedge l_2(u) \Big ]^{+} \,\mathrm {d}u, \end{aligned}$$
(24)

where

$$\begin{aligned}&l_1(u) = \mu _{1} \left( x_{1}(u) \wedge \left( N_{1} - b(u)\right) \right) ;\\&l_{2}(u) = \mu _2 \left( x_2(u) \wedge N_2\right) + (1-p)\mu _{1} \left( x_{1}(u) \wedge \left( N_{1} - b(u)\right) \right) . \end{aligned}$$

In order to prove this, we substitute (24) in (11) and show that the properties in (11) prevail. We begin by substituting (24) in the first line of (11). Using \((a-b)^+=[a-a\wedge b]\), for any ab, we obtain

$$\begin{aligned} x_1(t)&= x_1(0) + \int _0^t{\left[ \lambda (u)- \mu _1 \left[ x_1(u) \wedge \left( N_1-b(u)\right) \right] \right] \,\mathrm {d}u}\\&\quad - \int _0^t{1_{\left\{ x_1(u) \ge N_1 + H\right\} }\cdot 1_{\left\{ x_1(u) + x_2(u)< N_1 + N_2 + H\right\} }\left[ \lambda (u) - \lambda (u) \wedge l_1(u)\right] \,\mathrm {d}u} \\&\quad - \int _0^t{1_{\left\{ x_1(u) < \, N_1+ H\right\} }\cdot 1_{\left\{ x_1(u)+ x_2(u) \ge N_1 + N_2 + H\right\} }\left[ \lambda (u) - \lambda (u) \wedge l_2(u)\right] \,\mathrm {d}u}\\&\quad - \int _0^t{1_{\left\{ x_1(u) \ge \, N_1 + H\right\} }\cdot 1_{\left\{ x_1(u)+ x_2(u) \ge N_1 + N_2 + H\right\} }} \left[ \lambda (u) -\lambda (u) \wedge l_1(u) \wedge l_2(u)\right] \,\mathrm {d}u, \end{aligned}$$

and therefore,

$$\begin{aligned} x_1(t)&= x_1(0) + \int _0^t\Big [1_{\left\{ x_1(u)< \, N_1+ H\right\} } \cdot 1_{\left\{ x_1(u) + x_2(u)< \, N_1 + N_2 + H\right\} } \cdot \lambda (u)\nonumber \\&\quad - \mu _1 \left[ x_1(u) \wedge \left( N_1-b(u)\right) \right] \Big ]\,\mathrm {d}u \nonumber \\&\quad + \int _0^t{\left[ 1_{\left\{ x_{1}(u) \ge N_{1} + H\right\} } \cdot 1_{\left\{ x_1(u) + x_{2}(u)< N_1 + N_{2}+ H \right\} } \cdot \left( \lambda (u) \wedge l_1(u) \right) \right] \,\mathrm {d}u}\nonumber \\&\quad + \int _0^t{\left[ 1_{\left\{ x_{1}(u) < N_{1}+H\right\} } \cdot 1_{\left\{ x_1(u) + x_{2}(u) \ge N_1 + N_2 + H \right\} } \cdot \left( \lambda (u) \wedge l_2(u)\right) \right] \,\mathrm {d}u}\nonumber \\&\quad + \int _0^t\left[ 1_{\left\{ x_{1}(u) \ge N_{1}+H\right\} } \cdot 1_{\left\{ x_1(u) + x_{2}(u) \ge N_1 + N_2+H \right\} } \cdot \left( \lambda (u) \wedge l_1(u) \wedge l_2(u)\right) \right] \,\mathrm {d}u;\nonumber \\ x_2(t)&= x_2(0) + \int _0^t{\left[ p \mu _1 \left[ x_1(u) \wedge \left( N_1-b(u)\right) \right] - \mu _2 \left( x_2(u) \wedge N_2 \right) \right] \,\mathrm {d}u}. \end{aligned}$$
(25)

Clearly, the properties in the third and fourth lines in (11) prevail. It is left to verify that the first and second conditions prevail. This is done by the following proposition.

Proposition 2

The functions \(x_1(\cdot )\) and \(x_1(\cdot ) + x_2(\cdot )\) as in (25) are bounded by \(N_1 + H\) and \(N_1+N_2 + H\), respectively.

Proof

First, we prove that the function \(x_1(\cdot )\), as in (25), is bounded by \(N_1+H\). Assume that, for some t, \(x_1(t) > N_1+H\). Since \(x_1(0) \le N_1+H\) and \(x_1\) is continuous (being an integral), there must be a last \({\tilde{t}}\) in [0, t], such that \(x_1({\tilde{t}}) = N_1+H\) and \(x_1(u) > N_1+H\), for \(u \in [{\tilde{t}}, t]\). Without loss of generality, assume that \({\tilde{t}}=0\); thus \(x_1(0) = N_1+H\) and \(x_1(u) > N_1+H\) for \(u \in (0, t]\). From (25), we get that

$$\begin{aligned} x_1(t)&= N_1+H +\int _0^t{\left[ 1_{\left\{ x_{1}(u) + x_2(u) < N_1 + N_2+H\right\} }\cdot \left( \lambda (u) \wedge l_1(u) \right) \right] \,\mathrm {d}u}\, \\&\quad + \int _0^t{\left[ 1_{\left\{ x_{1}(u) + x_{2}(u) \ge N_1 + N_2+H\right\} }\cdot \left( \lambda (u) \wedge l_1(u) \wedge l_2(u)\right) \right] \,\mathrm {d}u}\\&\quad - \mu _1 \int _0^t{\left[ x_1(u) \wedge \left( N_1-b(u)\right) \right] \,\mathrm {d}u}\\&\le N_1 +H+ \int _0^t{\left[ l_1(u) - \mu _1 \left[ x_1(u) \wedge \left( N_1-b(u)\right) \right] \right] \,\mathrm {d}u}=N_1+H, \end{aligned}$$

which contradicts our assumption and proves that \(x_1(\cdot )\) cannot exceed \(H_1+N_1\).

What is left to prove now is that the function \(x_1(\cdot ) + x_2(\cdot )\) is bounded by \(N_1+N_2\). Without loss of generality, assume that \(x_1(0) + x_2(0) = N_1 + N_2+H\) and \(x_1(u) + x_2(u) > N_1 + N_2+H\) for \(u \in (0, t]\). This assumption, together with \(x_1 \le N_1+H\), yields that \(x_2 > N_2\); hence, from (25), we get that

$$\begin{aligned}&x_1(t) +x_2(t)\\&\quad = N_1 + N_2 + H \int _0^t{\left[ 1_{\left\{ x_{1}(u) \ge N_{1}+N_1\right\} } \cdot \left( \lambda (u) \wedge l_1(u) \wedge l_2(u)\right) \right] \,\mathrm {d}u}\\&\qquad + \int _0^t{\left[ 1_{\left\{ x_{1}(u) < N_{1}+H\right\} } \cdot \left( \lambda (u) \wedge l_2(u)\right) \right] \,\mathrm {d}u}\\&\qquad - \int _0^t{\left[ (1-p)\mu _1 \left( x_1(u) \wedge \left( N_1-b(u)\right) \right) + \mu _2 \left( x_2(u) \wedge N_2 \right) \right] \,\mathrm {d}u}\\&\quad \le N_1 + N_2 + H +\int _0^t\left[ l_2(u) - (1-p)\mu _1 \left( x_1(u)\wedge \left( N_1-b(u)\right) \right) \right. \\&\qquad \left. - \,\mu _2 \left( x_2(u) \wedge N_2 \right) \right] \,\mathrm {d}u\\&\quad = N_1+N_2+H, \end{aligned}$$

which contradicts the assumption that \(x_1(t) + x_2(t) > N_1 + N_2 + H\) and proves that \(x_1(\cdot )+x_2(\cdot )\) is bounded by \(N_1+N_2+H\). \(\square \)

By the solution uniqueness (Proposition 3), we have established that x, the fluid limit for the stochastic queueing family \(X^{\eta }\) in (2), is given by (25).

The following two remarks explain why (25) is equivalent to (12):

  1. 1.

    After proving that \(x_1(\cdot ) \le N_1 + H\) and \(x_1(\cdot ) + x_2(\cdot ) \le N_1 + N_2 + H\) in Proposition 2, the indicators in (24) can accommodate only the cases when \(x_1(\cdot ) = N_1 + H\) and \(x_1(\cdot ) + x_2(\cdot ) = N_1 + N_2+ H\).

  2. 2.

    When \(x_1(u)=N_1+H\) and \(x_1(u)+x_2(u) < N_1+N_2+H\), \(x_2(u) < N_2\), and hence \(b(u)=0\) and \(l_1(u) = l_1^*(u)\). Alternatively, when \(x_1(u)< N_1+H\) and \(x_1(u)+x_2(u) = N_1+N_2+H\), \(x_2(u) > N_2\), and therefore \(l_2(u)=l_2^*(u)\).

Appendix C: Uniqueness and Lipschitz property

Let \(C \equiv C[0,\infty ]\). We now define mappings \(\psi : C^2 \rightarrow C\) and \(\phi : C^2 \rightarrow C^2\) for \(m \in C^2\) by setting

$$\begin{aligned} \psi (m)(t)&= \sup _{0 \le s \le t} \left( -\Big (m_1(s) \wedge m_2(s)\right) \Big )^+; \\ \phi (m)(t)&= m(t) + \psi (m)(t)\begin{bmatrix} 1\\ 1 \end{bmatrix}, \quad t \ge 0. \end{aligned}$$

Proposition 3

Suppose that \(m \in C^2\) and \(m(0) \ge 0\). Then, \(\psi (m)\) is the unique function l, such that

  1. 1.

    l is continuous and non-decreasing with \(l(0)=0\),

  2. 2.

    \(r(t) = m(t) + l(t) \ge 0\) for all \(t \ge 0\),

  3. 3.

    l increases only when \(r_1=0\) or \(r_2=0\).

Proof

Let \(l^*\) be any other solution. We set \(y=r_1^* - r_1 = r_2^* - r_2 = l^* - l\). Using the Riemann–Stieltjes chain rule [31, Ch. 2.2]

$$\begin{aligned} f(y_t)=f(y_0) + \int _0^t f'(y) \,\mathrm {d}y, \end{aligned}$$

for any continuously differentiable \(f: R \rightarrow R\). Taking \(f(y) = y^2/2\), we get that

$$\begin{aligned} \frac{1}{2}\left( r_i^*(t) - r_i(t)\right) ^2 = \int _0^t (r_i^*-r_i)\,\mathrm {d}l^* + \int _0^t (r_i-r_i^*)\,\mathrm {d}l. \end{aligned}$$
(26)

The function \(l^*\) increases when either \(r_1^*=0\) or \(r_2^*=0\). In addition, \(r_1 \ge 0\) and \(r_2 \ge 0\). Thus, either \((r_1^*-r_1)\,\mathrm {d}l^* \le 0\) or \((r_2^*-r_2)\,\mathrm {d}l^* \le 0\). Since \(r_1^*-r_1 = r_2^*-r_2\), both terms are non-positive. The same principles yield that the second terms in both lines on the right-hand side of (26) are non-positive. Since the left-hand side \(\ge 0\), both sides must be zero; thus, \(r_1^*=r_1\), \(r_2^*=r_2\), and \(l^*=l\). \(\square \)

Proposition 4

The mappings \(\psi \) and \(\phi \) are Lipschitz continuous on \(D_o[0,t]\) under the uniform topology for any fixed t.

Proof

We begin by proving the Lipschitz continuity of \(\psi \). For this, we show that for any \(T >0\) there exists \(C \in R\) such that

$$\begin{aligned} \left||\psi (m) - \psi (m')\right||_T \le C\Big [\left||m_1-m'_1\right||_T \vee \left||m_2-m'_2\right||_T\Big ], \end{aligned}$$

for all \(m, m' \in D_0^2\).

$$\begin{aligned}&\left||\psi (m) - \psi (m')\right||_T \nonumber \\&\quad = \left||\sup _{0 \le s \le \cdot } \Big (-\big (m_1(s) \wedge m_2(s)\big )\Big )^+ - \sup _{0 \le s \le t} \Big (-\big (m'_1(s) \wedge m'_2(s)\big )\Big )^+\right||_T \nonumber \\&\quad \le \left||\sup _{0 \le s \le \cdot } \left| \big (m_1(s) \wedge m_2(s)\big ) - \big (m'_1(s) \wedge m'_2(s)\big )\right| \right||_T\nonumber \\&\quad = \left|| \big (m_1 \wedge m_2\big ) - \big (m'_1 \wedge m'_2\big )\right||_T \le 2\Big [\left||m_1-m'_1\right||_T \vee \left||m_2-m'_2\right||_T\Big ]. \end{aligned}$$
(27)

The last inequality derives from

$$\begin{aligned} m_1(t) \wedge m_2(t) = \big (m_1(t)-m'_1(t) +m'_1(t)\big ) \wedge \big (m_2(t)-m'_2(t) +m'_2(t)\big ); \end{aligned}$$

therefore,

$$\begin{aligned} m_1(t) \wedge m_2(t) \le m'_1(t) \wedge m'_2(t) + \left||m_1-m'_1\right||_T + \left||m_2-m'_2\right||_T, \\ m_1(t) \wedge m_2(t) \ge m'_1(t) \wedge m'_2(t) - \left||m_1-m'_1\right||_T - \left||m_2-m'_2\right||_T, \end{aligned}$$

and

$$\begin{aligned} \left| m_1(t) \wedge m_2(t) - m'_1(t) \wedge m'_2(t)\right| \le \left||m_1-m'_1\right||_T + \left||m_2-m'_2\right||_T, \end{aligned}$$

which yields

$$\begin{aligned} \left||m_1(t) \wedge m_2(t) - m'_1(t) \wedge m'_2(t)\right||_T&\le \left||m_1-m'_1\right||_T + \left||m_2-m'_2\right||_T \\&\le 2 \left( \left||m_1-m'_1\right||_T \vee \left||m_2-m'_2\right||_T\right) . \end{aligned}$$

Our next step is proving the Lipschitz continuity of \(\phi \). For this, we show that for any \(T >0\) there exists \(C \in R\) such that

$$\begin{aligned} \left||\phi _1(m) - \phi _1(m')\right||_T \vee \left||\phi _2(m) - \phi _2(m')\right||_T \le C\Big [\left||m_1-m'_1\right||_T \vee \left||m_2-m'_2\right||_T\Big ], \end{aligned}$$

for all \(m, m' \in D_0^2\).

We begin with the left-hand side:

$$\begin{aligned}&\left||\phi _1(m) - \phi _1(m')\right||_T \vee \left||\phi _2(m) - \phi _2(m')\right||_T \\&= \left||m_1(t) + \psi (m)(t) - m'_1(t) - \psi (m')(t)\right||_T \vee \\&\qquad \left||m_2(t) + \psi (m)(t) - m'_2(t) - \psi (m')(t)\right||_T\\&= \left||m_1(t) - m'_1(t) + \psi (m)(t) - \psi (m')(t)\right||_T \vee \\&\qquad \left||m_2(t) - m'_2(t) + \psi (m)(t) - \psi (m')(t)\right||_T \\&\le \left||m_1(t) - m'_1(t)\right||_T + \left||\psi (m)(t) - \psi (m')(t)\right||_T \vee \\&\qquad \left||m_2(t) - m'_2(t)\right||_T + \left||\psi (m)(t) - \psi (m')(t)\right||_T \\&\le \left||m_1-m'_1\right||_T \vee \left||m_2-m'_2\right||_T + \left||\psi (m)(t) - \psi (m')(t)\right||_T \\&\le 3 \left( \left||m_1-m'_1\right||_T \vee \left||m_2-m'_2\right||_T \right) , \end{aligned}$$

where the last inequality is derived from (27). \(\square \)

Appendix D: Lemma 1

Lemma 1

Let the function \(f_{\eta }(\cdot ) \rightarrow 0\), u.o.c. as \({\eta } \rightarrow \infty \). Then, \(f_{\eta }(g_{\eta }(\cdot )) \rightarrow 0\), u.o.c. as \({\eta } \rightarrow \infty \), for any \(g_{\eta }(\cdot )\) that are locally bounded uniformly in \(\eta \).

Proof

Choose \(T>0\), and let \(C_{T}\) be a constant such that \(\left| g_{\eta }(t)\right| \le C_{T}\), for all \(t \in [0, T]\). By the assumption on \(f_{\eta }(\cdot )\), we have \(\Vert f_\eta \Vert _{C_T} \rightarrow 0\) as \(\eta \rightarrow \infty \). It follows that \(\Vert f_\eta (g_\eta (\cdot ))\Vert _T \rightarrow 0\) as \(\eta \rightarrow \infty \), which completes the proof. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zychlinski, N., Mandelbaum, A. & Momčilović, P. Time-varying tandem queues with blocking: modeling, analysis, and operational insights via fluid models with reflection. Queueing Syst 89, 15–47 (2018). https://doi.org/10.1007/s11134-018-9578-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-018-9578-x

Keywords

Mathematics Subject Classification

Navigation