Skip to main content
Log in

Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics

  • Published:
Reliable Computing

Abstract

Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations.

This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading.

To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akpan, U. O., Koko, T. S., Orisamolu, I. R., and Gallant, B. K.: Practical Fuzzy Finite Element Analysis of Structures, Finite Elem. Anal. Des. 38 (2001), pp. 93–111.

    Article  MATH  Google Scholar 

  2. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.

    MATH  Google Scholar 

  3. Apostolatos, N. and Kulisch, U.: Grundzuge einer Intervallrechtung fur Matrizen und einige Anwwendungen, Elektron. Rechenanlagen 10 (1968), pp. 73–83 (in German).

    MATH  Google Scholar 

  4. Bathe, K.: Finite Element Procedures, Prentice Hall, Upper Saddle River, 1996.

    Google Scholar 

  5. Ben-Haim, Y. and Elishakoff, I.: Convex Models of Uncertainty in Applied Mechanics, Elsevier Science, Amsterdam, 1990.

    MATH  Google Scholar 

  6. Berleant, D.: Automatically Verified Reasoning with Both Intervals and Probability Density Functions, Interval Computations (2) (1993), pp. 48–70.

  7. Buonopane, S. G., Schafer, B. W., and Igusa, T.: Reliability Implications of Advanced Analysis in Design of Steel Frames, in: Proc. ASSCCA'03, Sydney, 2003.

  8. Chen, S. H., Lian, H. D., and Yang, X. W.: Interval Static Displacement Analysis for Structures with Interval Parameters, Int. J. Numer. Methods Engrg. 53 (2002), pp. 393–407.

    Article  MATH  Google Scholar 

  9. Cook, R. D., Malkus, D. S., and Plesha, M. E.: Concepts and Applications of Finite Element Analysis, John Wiley & Sons, 1989.

  10. Dempster, A. P.: Upper and Lower Probabilities Induced by a Multi-Valued Mapping, Ann. Mat. Stat. 38 (1967), pp. 325–339.

    MathSciNet  MATH  Google Scholar 

  11. Dessombz, O., Thouverez, F., Laîné, J.-P., and Jézéquel, L.: Analysis of Mechanical Systems Using Interval Computations Applied to Finite Elements Methods, J. Sound. Vib. 238 (5) (2001), pp. 949–968.

    Article  Google Scholar 

  12. Ferson, S. and Ginzburg, L. R.: Different Methods Are Needed to Propagate Ignorance and Variability, Reliab. Engng. Syst. Saf. 54 (1996), pp. 133–144.

    Article  Google Scholar 

  13. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D. S., and Sentz, K.: Constructing Probability Boxes and Dempster-Shafer Structures, Technical Report SAND2002-4015, Sandia National Laboratories, 2003.

  14. Gallagher, R. H.: Finite Element Analysis Fundamentals, Prentice Hall, Englewood Cliffs, 1975.

    Google Scholar 

  15. Ganzerli, S. and Pantelides, C. P.: Load and Resistance Convex Models for Optimum Design, Struct. Optim. 17 (1999), pp. 259–268.

    Google Scholar 

  16. Gay, D. M.: Solving Interval Linear Equations, SIAM J. Numer. Anal. 19 (4) (1982), pp. 858–870.

    Article  MATH  MathSciNet  Google Scholar 

  17. Hansen, E.: Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.

    MATH  Google Scholar 

  18. Hansen, E.: Interval Arithmetic in Matrix Computation, SIAM J. Numer. Anal. I (2) (1965), pp. 308–320.

    Article  Google Scholar 

  19. Jansson, C.: Interval Linear System with Symmetric Matrices, Skew-Symmetric Matrices, and Dependencies in the Right Hand Side, Computing 46 (1991), pp. 265–274.

    Article  MATH  MathSciNet  Google Scholar 

  20. Kearfott, R. B., Nakao, M., Neumaier, A., Rump, S., Shary, S., and van Hentenryck, P.: Standardized Notation in Interval Analysis, Reliable Computing, submitted.

  21. Kendall, D. G.: Foundations of a Theory of Random Sets, in: Harding, E. and Kendall, D. (eds), Stochastic Geometry, New York, 1974, pp. 322–376.

  22. Koyluoglu, U., Cakmak, S., Ahmet, N., and Soren, R. K.: Interval Algebra to Deal with Pattern Loading and Structural Uncertainty, J. Engrg. Mech. 121 (11) (1995), pp. 1149–1157.

    Article  Google Scholar 

  23. Lodwick, W. A. and Jamison, K. D.: Special Issue: Interface between Fuzzy Set Theory and Interval Analysis, Fuzzy Sets and Systems 135 (2002), pp. 1–3.

    Article  Google Scholar 

  24. Mayer, O.: Algebraische und Metrische Strukturen in der Intervallrechung und eingine Anwendungen, Computing 5 (1970), pp. 144–162 (in German).

    Article  MATH  Google Scholar 

  25. McWilliam, S.: Anti-Optimisation of Uncertain Structures Using Interval Analysis, Comput. Struct. 79 (2000), pp. 421–430.

    Article  Google Scholar 

  26. Melchers, R. E.: Structural Reliability Analysis and Prediction, 2 edition, John Wiley & Sons, West Sussex, 1999.

    Google Scholar 

  27. Moller, B., Graf, W., and Beer, M.: Fuzzy Structural Analysis Using Level-Optimization, Comput. Mech. 26 (6) (2000), pp. 547–565.

    Article  Google Scholar 

  28. Moore, R. E.: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.

    MATH  Google Scholar 

  29. Moore, R. E.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.

    MATH  Google Scholar 

  30. Muhanna, R. L. and Mullen, R. L.: Development of Interval Based Methods for Fuzziness in Continuum Mechanics, in: Proc. ISUMA-NAFIPS'95, 1995, pp. 23–45.

  31. Muhanna, R. L. and Mullen, R. L.: Formulation of Fuzzy Finite Element Methods for Mechanics Problems, Compu.-Aided Civ. Infrastruct. Engrg. 14 (1999), pp. 107–117.

    Article  Google Scholar 

  32. Muhanna, R. L. and Mullen, R. L.: Uncertainty in Mechanics Problems–Interval-Based Approach, J. Engrg. Mech. 127 (6) (2001), pp. 557–566.

    Article  Google Scholar 

  33. Mullen, R. L. and Muhanna, R. L.: Bounds of Structural Response for All Possible Loadings, J. Struct. Engrg., ASCE 125 (1) (1999), pp. 98–106.

    Article  Google Scholar 

  34. Mullen, R. L. and Muhanna, R. L.: Structural Analysis with Fuzzy-Based Load Uncertainty, in: Proc. 7th ASCE EMD/STD Joint Spec. Conf. on Probabilistic Mech. and Struct. Reliability, 1996, pp. 310–313.

  35. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, 1990.

  36. Neumaier, A.: Overestimation in Linear Interval Equations, SIAM J. Numer. Anal. 24 (1) (1987), pp. 207–214.

    Article  MATH  MathSciNet  Google Scholar 

  37. Neumaier, A.: Rigorous Sensitivity Analysis for Parameter-Dependent Systems of Equations, J. Math. Anal. Appl. 144 (1989), pp. 14–25.

    Article  MathSciNet  Google Scholar 

  38. Pantelides, C. P. and Ganzerli, S.: Comparison of Fuzzy Set and Convex Model Theories in Structural Design, Mech. Systems Signal Process. 15 (3) (2001), pp. 499–511.

    Article  Google Scholar 

  39. Pownuk, A.: Calculation of the Extreme Values of Displacements in Truss Structures with Interval Parameters, 2004, http://s212.bud.polsl.gliwice.pl/ andrzej/ php/apdl2interval/apdl2interval init.php.

  40. Pownuk, A.: Efficient Method of Solution of Large Scale Engineering Problems with Interval Parameters, in: Muhanna, R. L. and Mullen, R. L. (eds), Proc. NSF Workshop on Reliable Engineering Computing, Savannah, 2004, http://www.gtsav.gatech.edu/rec/recworkshop/index.html.

  41. Rao, S. S. and Berke, L.: Analysis of Uncertain Structural Systems Using Interval Analysis, AIAA J. 35 (4) (1997), pp. 727–735.

    Article  MATH  Google Scholar 

  42. Rao, S. S. and Chen, L.: Numerical Solution of Fuzzy Linear Equations in Engineering Analysis, Int. J. Numer. Meth. Engng. 43 (1998), pp. 391–408.

    Article  MATH  MathSciNet  Google Scholar 

  43. Rohn, J.: Linear Interval Equations: Computing Sufficiently Accurate Enclosures Is NP-Hard, Technical Report 621, Institute of Computer Science, Academy of Sciences of the Czech Republic, 1995.

  44. Rump, S. M.: On the Solution of Interval Linear Systems, Computing 47 (1992), pp. 337–353.

    Article  MathSciNet  MATH  Google Scholar 

  45. Rump, S. M.: Self-Validating Methods, Linear Algebra Appl. 324 (2001), pp. 3–13.

    Article  MATH  MathSciNet  Google Scholar 

  46. Rump, S. M.: Solving Algebraic Problems with High Accuracy, in: Kulisch, U. and Miranker, W. (eds), A New Approach to Scientific Computation, Academic Press, New York, 1983.

    Google Scholar 

  47. Sentz, K. and Ferson, S.: Combination of Evidence in Dempster-Shafer Theory, Technical Report SAND2002–0835, Sandia National Laboratories, 2002.

  48. Shafer, G.: A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976.

    MATH  Google Scholar 

  49. Sun Microsystems: Interval Arithmetic in High Performance Technical Computing, Sun Microsystems, 2002 (a White Paper).

  50. Walley, P.: Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London, 1991.

    MATH  Google Scholar 

  51. Zadeh, L. A.: Fuzzy Sets as a Basis for a Theory of Possibility, Fuzzy Sets and Systems 1 (1978), pp. 3–28.

    Article  MATH  MathSciNet  Google Scholar 

  52. Zhang, H.: Nodeterministic Linear Static Finite Element Analysis: An Interval Approach, Ph.D. thesis, Georgia Institute of Technology, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafi L. Muhanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhanna, R.L., Zhang, H. & Mullen, R.L. Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics. Reliable Comput 13, 173–194 (2007). https://doi.org/10.1007/s11155-006-9024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-006-9024-3

Keywords

Navigation