Skip to main content
Log in

Mapping the research on aquaculture. A bibliometric analysis of aquaculture literature

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Research on aquaculture is expanding along with the exceptional growth of the sector and has an important role in supporting even further the future developments of this relatively young food production industry. In this paper we examined the aquaculture literature using bibliometrics and computational semantics methods (latent semantic analysis, topic model and co-citation analysis) to identify the main themes and trends in research. We analysed bibliographic information and abstracts of 14,308 scientific articles on aquaculture recorded in Scopus. Both the latent semantic analysis and the topic model indicate that the broad themes of research on aquaculture are related to genetics and reproduction, growth and physiology, farming systems and environment, nutrition, water quality, and health. The topic model gives an estimate of the relevance of these research themes by single articles, authors, research institutions, species and time. With the co-citation analysis it was possible to identify more specific research fronts, which are attracting high number of co-citations by the scientific community. The largest research fronts are related to probiotics, benthic sediments, genomics, integrated aquaculture and water treatment. In terms of temporal evolution, some research fronts such as probiotics, genomics, sea-lice, and environmental impacts from cage aquaculture, are still expanding while others, such as mangroves and shrimp farming, benthic sediments, are gradually losing weight. While bibliometric methods do not necessarily provide a measure of output or impact of research activities, they proved useful for mapping a research area, identifying the relevance of themes in the scientific literature and understanding how research fronts evolve and interact. By using different methodological approaches the study is taking advantage of the strengths of each method in mapping the research on aquaculture and showing in the meantime possible limitations and some directions for further improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asche, F. (2008). Farming the sea. Marine Resource Economics, 23(4), 527–547.

    Google Scholar 

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.

    MATH  Google Scholar 

  • Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., & Blei, D. (2009). Reading tea leaves: How Humans Interpret Topic Models. In Neural Information Processing Systems (NIPS).

  • Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.

    Article  Google Scholar 

  • Delanghe, H., Sloan, B., & Muldur, U. (2011). European research policy and bibliometric indicators, 1990–2005. Scientometrics, 87(2), 389–398.

    Article  Google Scholar 

  • EATIP European aquaculture technology and innovation platform. (2011). Retrieved 25 October 2011 from http://www.eatip.eu/.

  • FAO. The state of world fisheries and aquaculture. (2010). Retrieved 25 October 2011 from http://www.fao.org/docrep/013/i1820e/i1820e00.htm.

  • FEUFAR The future of European fisheries and aquaculture research Final Report. (2008). Retrieved 25 October 2011 from http://www.feufar.eu.

  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 101(1), 5228–5235.

    Article  Google Scholar 

  • Gruen, B., & Hornik, K. (2011). Topicmodels: An R package for fitting topic models. Journal of Statistical Software, 40(13), 1–30.

    Google Scholar 

  • Landauer, T., Foltz, P. W., & Laham, D. (1998). Introduction to Latent Semantic analysis. Discourse Processes, 25, 259–284.

    Article  Google Scholar 

  • Li, M., Wang, J., & Chen, J. (2008). A fast agglomerate algorithm for mining functional modules in protein interaction networks. BioMedical engineering and informatics: New development and the future. In Proceedings of the 1st International Conference on BioMedical Engineering and Informatics, BMEI 2008 (pp. 1–603) Hainan.

  • Sci2 Team. (2009). Science of Science (Sci2) Tool. Indiana University and SciTech Strategies, http://sci2.cns.iu.edu.

  • Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 68(3), 595–610.

    Article  Google Scholar 

  • Small, H., & Griffith, B. C. (1974). The structure of scientific literatures I: Identifying and graphing specialties. Science Studies, 4(1), 17–40.

    Article  Google Scholar 

  • Steyvers, M. (2007). Probabilistic topic models. In: T. Landauer, D McNamara, S. Dennis, and W. Kintsch (Eds.), Latent Semantic Analysis: A Road to Meaning. Hillsdale: Erlbaum.

  • Thomson. (2008). Research front methodology, Retrieved 25 October 2011, from http://esi-topics.com/RFmethodology.html.

  • Wild, F. (2005). lsa: Latent Semantic Analysis. R package version 0.57.

  • Wild, F., Stahl, C., Stermsek, G., & Neumann, G. 2005. Parameters driving effectiveness of automated essay scoring with LSA. In Proceedings of the 9th International Computer Assisted Assessment Conference (CAA), pp. 485–494.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Natale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natale, F., Fiore, G. & Hofherr, J. Mapping the research on aquaculture. A bibliometric analysis of aquaculture literature. Scientometrics 90, 983–999 (2012). https://doi.org/10.1007/s11192-011-0562-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-011-0562-z

Keywords

Navigation