Skip to main content
Log in

The individual author’s publication–citation process: theory and practice

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The model proposed by Burrell (Information Processing and Management 28:637–645, 1992, Journal of Informetrics 1:16–25, 2007a) to describe the way that an individual author’s publication/citation career develops in time is investigated further, the aim being to describe in more detail the form of the citation distribution and the way it evolves over time. Both relative and actual frequency distributions are considered. Theoretical aspects are developed analytically and graphically and then illustrated using small empirical data sets relating to some well-known informetrics scholars. Perhaps surprisingly, it is found that the distribution may well be approximated in some cases by a simple geometric distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlgren, P., Jarneving, B., & Rousseau, R. (2003). Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. Journal of the American Society for Information Science and Technology, 54(6), 550–560.

    Article  Google Scholar 

  • Burrell, Q. L. (1980). A simple stochastic model for library loans. Journal of Documentation, 36(2), 115–132.

    Article  Google Scholar 

  • Burrell, Q. L. (1990). Using the gamma-Poisson model to predict library circulations. Journal of the American Society for Information Science, 41(3), 164–170.

    Article  Google Scholar 

  • Burrell, Q. L. (1992). A simple model for linked informetric processes. Information Processing and Management, 28(5), 637–645.

    Article  Google Scholar 

  • Burrell, Q. L. (2001). Stochastic modelling of the first-citation distribution. Scientometrics, 52, 3–12.

    Article  Google Scholar 

  • Burrell, Q. L. (2002a). On the nth-citation distribution and obsolescence. Scientometrics, 53, 309–323.

    Article  Google Scholar 

  • Burrell, Q. L. (2002b). Will this paper ever be cited? Journal of the American Society for Information Science and Technology, 53, 232–235.

    Article  Google Scholar 

  • Burrell, Q. L. (2003). Predicting future citation behavior. Journal of the American Society for Information Science and Technology, 54(5), 372–378.

    Article  Google Scholar 

  • Burrell, Q. L. (2005a). The use of the generalised Waring process in modelling informetric data. Scientometrics, 64(3), 247–270.

    Article  Google Scholar 

  • Burrell, Q. L. (2005b). Are “Sleeping Beauties” to be expected? Scientometrics, 65(3), 381–389.

    Article  Google Scholar 

  • Burrell, Q. L. (2007a). Hirsch’s h-index: a stochastic model. Journal of Informetrics, 1(1), 16–25.

    Article  Google Scholar 

  • Burrell, Q. L. (2007b). Hirsch index or Hirsch rate? Some thoughts arising from Liang’s data. Scientometrics, 73(1), 19–28.

    Article  Google Scholar 

  • Burrell, Q. L. (2007c). On the h-index, the size of the Hirsch core and Jin’s A-index. Journal of Informetrics, 1(2), 170–177.

    Article  MathSciNet  Google Scholar 

  • Burrell, Q. L. (2007d). Hirsch’s h-index and Egghe’s g-index. In D. Torres-Salinas & H. F. Moed (Eds.), Proceedings of ISSI 2007 (Vol. 1, pp. 162–169). Madrid: Centre for Scientific Information and Documentation (CINDOC).

    Google Scholar 

  • Burrell, Q. L. (2007e). On Hirsch’s h, Egghe’s g and Kosmulski’s h(2). Scientometrics, 79(1), 79–91.

    Article  Google Scholar 

  • Burrell, Q. L. (2008). Extending Lotkaian informetrics. Information Processing and Management, 44(5), 1794–1807.

    Article  Google Scholar 

  • Burrell, Q. L. (2009). The publication/citation process at the micro level: A case study. Journal of Scientometrics and Information Management, 3(1), 71–77.

    Article  Google Scholar 

  • Burrell, Q. L. (2012). Alternative thoughts on uncitedness. Journal of the American Society for Information Science and Technology, 63(7), 1466–1470.

    Article  Google Scholar 

  • Burrell, Q. L. (2013). Formulae for the h-index: A lack of robustness in Lotkaian informetrics? Journal of the American Society for Information Science and Technology, (Accepted for publication).

  • Burrell, Q. L., & Cane, V. R. (1982). The analysis of library data. (With discussion.). Journal of the Royal Statistical Society (Series A), 145(4), 439–471.

    Article  Google Scholar 

  • Burrell, Q. L., & Fenton, M. R. (1993). Yes, the GIGP really does work—and is workable! Journal of the American Society for Information Science, 44(2), 61–69.

    Article  Google Scholar 

  • Egghe, L. (2006). Theory and practice of the g-index. Scientometrics, 69(1), 131–152.

    Article  MathSciNet  Google Scholar 

  • Egghe, L. (2010). The Hirsch index and related impact measures. In B. Cronin (Ed.), Annual Review of Information Science and Technology (Vol. 44, pp. 65–114). Medford, NJ: Information Today.

    Google Scholar 

  • Egghe, L., Guns, R., & Rousseau, R. (2011). Thoughts on uncitedness: Nobel laureates and Fields Medalists as case studies. Journal of the American Society for Information Science and Technology, 62(8), 1637–1644.

    Article  Google Scholar 

  • Egghe, L., & Rousseau, R. (2006). An informetric model for the Hirsch-index. Scientometrics, 69(1), 121–129.

    Article  Google Scholar 

  • Egghe, L., & Rousseau, R. (2012a). Theory and practice of the shifted Lotka function. Scientometrics, 91(1), 295–301.

    Article  Google Scholar 

  • Egghe, L., & Rousseau, R. (2012b). The Hirsch index of a shifted Lotka function and its relation with the impact factor. Journal of the American Society for Information Science and Technology, 63(5), 1048–1053.

    Article  Google Scholar 

  • Etkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: from National Systems and Mode 2 to a Triple Helix of university-industry-government relations. Research Policy, 29(2), 109–123.

    Article  Google Scholar 

  • Morse, P. M. (1976). Demand for library materials: an exercise in probability analysis. Collection Management, 1, 47–78.

    Article  Google Scholar 

  • Ross, S. (1996). Stochastic processes (2nd ed.). New York: John Wiley.

    MATH  Google Scholar 

  • Schubert, A., Glanzel, W., & Braun, T. (1989). Scientometric datafiles—A comprehensive set of indicators on 2649 journals and 96 countries in all major science fields and subfields 1981–1985. Scientometrics, 16(1–6), 3–478.

    Article  Google Scholar 

  • Sichel, H. S. (1985). A bibliometric distribution which really works. Journal of the American Society for Information Science, 36, 314–321.

    Article  Google Scholar 

  • Stirzaker, D. (2005). Stochastic processes and models. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Xekalaki, E., & Zografi, M. (2008). The generalized Waring process and its applications. Communications in Statistics - Theory and Methods, 37, 1835–1854.

    Article  MATH  MathSciNet  Google Scholar 

  • Zografi, M., & Xekalaki, E. (2001). The generalised Waring process. In E. A. Lypitakis (Ed.), Proceedings of the 5th Hellenic-European Conference on Computer Mathematics and its Applications, Athens (pp. 886–893). Athens: HERCMA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin L. Burrell.

Appendix

Appendix

In the proofs we make free use of standard results regarding Poisson processes. The reader can refer to such standard references as Ross (1996) and Stirzaker (2005).

Proof of Proposition 2

The proof is constructed by conditioning on T, the time since publication, and Λ, the citation rate of a paper.

$$ G_{t} (z) = E\left[ {z^{{X_{t} }} } \right] = E_{T,\Uplambda } E\left[ {z^{{X_{t} }} \left| {T,\Uplambda } \right.} \right] $$

Given T and Λ, we have that citations following a Poisson distribution with mean ΛT so that the pgf is given by

$$ E\left[ {z^{{X_{t} }} \left| {T,\Uplambda } \right.} \right] = \exp \left[ {\Uplambda T(z - 1)} \right] $$

Now averaging over T, which has a uniform distribution on [0, t], we find

$$ \begin{aligned} E\left[ {z^{{X_{t} }} \left| \Uplambda \right.} \right] & = E_{T} E\left[ {z^{{X_{t} }} \left| {T,\Uplambda } \right.} \right] = \int {f_{T} (s)} e^{\Uplambda s(z - 1)} ds = \int\limits_{0}^{t} {\frac{1}{t}e^{\Uplambda s(z - 1)} } \\ & = \frac{1}{t\Uplambda (z - 1)}\left[ {e^{\Uplambda s(z - 1)} - 1} \right] \\ \end{aligned} $$
(A1)

Finally averaging over Λ, which has a gamma distribution as in (2), we get

$$ \begin{aligned} G_{t} (z) & = E\left[ {z^{{X_{t} }} } \right] = E_{\Uplambda } E\left[ {z^{{X_{t} }} \left| \Uplambda \right.} \right] = f_{\Uplambda } (\lambda )\frac{1}{t\lambda (z - 1)}\left[ {e^{\lambda t(z - 1)} - 1\,} \right]d\lambda \\ & = \frac{1}{t(z - 1)}\int\limits_{0}^{\infty } {\frac{{\alpha^{\nu } \lambda^{\nu - 1} }}{\Upgamma (\nu )}e^{ - \alpha \lambda } \frac{1}{\lambda }\left[ {e^{\lambda t(z - 1)} - 1} \right]} \,d\lambda \\ & = \frac{{\alpha^{\nu } }}{t(z - 1)\Upgamma (\nu )}\int\limits_{0}^{\infty } {\left[ {\lambda^{\nu - 2} e^{ - \lambda (\alpha - t(z - 1))} - \lambda^{\nu - 2} e^{ - \alpha \lambda } } \right]\,d\lambda } \\ & = \frac{{\alpha^{\nu } }}{t(z - 1)\Upgamma (\nu )}\left( {\frac{\Upgamma (\nu - 1)}{{(\alpha - t(z - 1))^{\nu - 1} }} - \frac{\Upgamma (\nu - 1)}{{\alpha^{\nu - 1} }}} \right) \\ \end{aligned} $$

(recognising each of the integrands as being proportional to a gamma pdf)

$$ \begin{aligned} & = \frac{\alpha }{(\nu - 1)t(z - 1)}\left[ {\frac{1}{{\left( {1 - (t/\alpha )(z - 1)} \right)^{\nu - 1} }} - 1} \right] \\ & = \frac{1}{(\nu - 1)s(z - 1)}\left[ {\frac{1}{{\left( {1 - s(z - 1)} \right)^{\nu - 1} }} - 1} \right] \\ \end{aligned} $$

(where s = t/α)

$$ \begin{aligned} & = \frac{1}{(\nu - 1)s(z - 1)}\left[ {\left( {\frac{1/(1 + s)}{1 - (s/(1 + s)z)}} \right)^{\nu - 1} - 1} \right] \\ & = \frac{1}{(\nu - 1)s(z - 1)}\left[ {\left( {\frac{p}{{\left( {1 - qz} \right)}}} \right)^{\nu - 1} - 1} \right] \\ \end{aligned} $$
(A2)

where, as before, \( p = \frac{1}{1 + s} = \frac{\alpha }{\alpha + t} = 1 - q \)

For the power series representation, this follows from expanding the first term inside the square brackets of (A2) using the general binomial expansion for negative powers and then simplifying. Thus

$$ \begin{aligned} \left( {\frac{p}{{\left( {1 - qz} \right)}}} \right)^{v - 1} - 1 & = \left( {\frac{1/(1 + s)}{1 - sz/(1 + s))}} \right)^{\nu - 1} - 1 = 1 - (s/(z - 1))^{ - (\nu - 1)} - 1 \\ & = \left( {1 + (\nu - 1)s(z - 1) + \frac{(\nu - 1)v}{2!}\left( {s(z - 1)^{2} } \right) + \cdots } \right) - 1 \\ & = (\nu - 1)s(z - 1) + \frac{(\nu - 1)v}{2!}\left( {s(z - 1)^{2} } \right) + \frac{(\nu - 1)\nu (\nu + 1)}{3!}\left( {s(z - 1)^{3} } \right) + \cdots \\ \end{aligned} $$

Now dividing through by \( (\nu - 1)s(z - 1) \) gives the result.□

Remark

The power series representation could alternatively have been derived by expanding (A1) in standard power series form and then integrating term by term with respect to the gamma pdf of Λ.

Proof of Proposition 3

This is an application of a well-known result for probability generating functions. If the pgf G(z) of a random variable X is differentiated wrt z r times then

$$ G^{(r)} (z) = \frac{{d^{r} G(z)}}{{dz^{r} }} = E\left[ {X(X - 1) \ldots (X - r + 1)z^{X - r} } \right] $$

so that \( G^{(r)} (1) = E\left[ {X(X - 1) \ldots (X - r + 1)} \right] \)

Thus successively differentiating the power series expansion (7) and putting z = 1 each time gives the result.□

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burrell, Q.L. The individual author’s publication–citation process: theory and practice. Scientometrics 98, 725–742 (2014). https://doi.org/10.1007/s11192-013-1018-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-013-1018-4

Keywords

Navigation