Skip to main content
Log in

Exploring temporal relationships between scientific and technical fronts: a case of biotechnology field

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Biotechnology is an expanding interdisciplinary field in which the interactions of science and technology (S&T) are more and more intensified. Question raised regarding the dynamic interactions between S&T encourages us to propose a series of methodologies for examination. Using high-impact publications and patents as the proxy measures, two document sets are transformed into the scientific and technical front trajectories respectively, and then each subject is categorized into either basic science, or applied technology, or co-existence. The results show that, in the biotechnology field, subjects of embryonic or mesenchymal stem cells, RNA interference, microRNA, and microbial fuel cell are in the basic science phase; those of plant breeding, seed diversity, and taste receptors have been applied to practice. There also exists interactions between S&T in the subjects of disease treatment and gene analysis platform, in which the behavior of technology precedes science, science precedes technology, or synchronous development can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arber, W. (2009). The impact of science and technology on the civilization. Biotechnology Advances, 27(6), 940–944.

    Article  Google Scholar 

  • Bassecoulard, E., & Zitt, M. (2005). Patents and publications. The lexical connection. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 665–694). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Boyack, K. W., Newman, D., Duhon, R. J., Klavans, R., Patek, M., Biberstine, J. R., et al. (2011). Clustering more than two million biomedical publications: Comparing the accuracies of nine text-based similarity approaches. PLoS ONE, 6(3), e18029.

    Article  Google Scholar 

  • Braun, R. (2002). People’s concerns about biotechnology: Some problems and some solutions. Journal of Biotechnology, 98(1), 3–8.

    Article  Google Scholar 

  • Callaert, J., Grouwels, J., & Van Looy, B. (2012). Delineating the scientific footprint in technology: Identifying scientific publications within non-patent references. Scientometrics, 91(2), 383–398.

    Article  Google Scholar 

  • Chen, S. H., Huang, M. H., & Chen, D. Z. (2012a). Identifying and visualizing technology evolution: A case study of smart grid technology. Technological Forecasting and Social Change, 79(6), 1099–1110.

    Article  Google Scholar 

  • Chen, S. H., Huang, M. H., & Chen, D. Z. (2013). Exploring technology evolution and transition characteristics of leading countries: a case of fuel cell field. Advanced Engineering Informatics. doi:10.1016/j.aei.2013.02.001.

    Google Scholar 

  • Chen, S. H., Huang, M. H., Chen, D. Z., & Lin, S. Z. (2012b). Detecting the temporal gaps of technology fronts: A case study of smart grid field. Technological Forecasting and Social Change, 79(9), 1705–1719.

    Article  Google Scholar 

  • Engelsman, E. C., & van Raan, A. F. J. (1994). A patent based cartography of technology. Research Policy, 23(1), 1–26.

    Article  Google Scholar 

  • Falkowski, T. (2009). Community analysis in dynamic social networks. Dissertation, University Magdeburg.

  • Gardner, P. L. (1999). The representation of science-technology relationships in Canadian physics textbooks. International Journal of Science Education, 21(3), 329–347.

    Article  Google Scholar 

  • Gavrilescu, M., & Chisti, Y. (2005). Biotechnology: A sustainable alternative for chemical industry. Biotechnology Advances, 23(7–8), 471–499.

    Article  Google Scholar 

  • Glänzed, W., & Thijs, B. (2011). Using ‘core documents’ for the representation of clusters and topics. Scientometrics, 88(1), 297–309.

    Article  Google Scholar 

  • Glänzel, W., & Czerwon, H. J. (1996). A new methodological approach to bibliographic coupling and its application to the national, regional and institutional level. Scientometrics, 37(2), 195–221.

    Article  Google Scholar 

  • Glänzel, W., & Meyer, M. (2003). Patents cited in the scientific literature: An exploratory study of reverse citation relations. Scientometrics, 58(2), 415–428.

    Article  Google Scholar 

  • Hall, B., Jaffe, A., & Trajtenberg, M. (2001). The NBER patent citations data file: Lessons, insights and methodological tools. WP 8498 National Bureau of Economic Research.

  • Huang, Y. H. (2009). An investigation of the interaction between science and technology from literatures of giant magnetoresistance. Journal of Library and Information Studies, 7(1/2), 53–76.

    Google Scholar 

  • Kostoff, R. N., & Schaller, R. R. (2001). Science and technology roadmaps. IEEE Transaction on Engineering Management, 48(2), 132–143.

    Article  Google Scholar 

  • Lee, C. H., & Chien, T. F. (2013). Leveraging microblogging big data with a modified density-based clustering approach for event awareness and topic ranking. Journal of Information Science. doi:10.1177/0165551513478738.

    Google Scholar 

  • Lissoni, F., & Montobbio, F. (2008). Inventorship and authorship in patent-publication pairs: An enquiry into the economics of scientific credit, Working Papers 224. Centre for Knowledge, Internationalization and Technology Studies, Universita’ Bocconi, Milano.

  • Lo, S. S. (2010a). Scientific linkage of science research and technology development: A case of genetic engineering research. Scientometrics, 82(1), 109–120.

    Article  Google Scholar 

  • Lo, S. S. (2010b). A comparative study of linkage indexes: Co-assignee, reciprocal citation, patent coupling and co-patent. Journal of Library and Information Studies, 8(1), 11–27.

    Google Scholar 

  • Nakamura, H., Sasaki, H., Shibata, N., Kajikawa, Y., Sakata, I., & Suzuki, S. (2010). Science and technology map analysis of a multi-disciplinary field-case study of aerospace engineering. In IEEE international conference on industrial engineer and engineering management, (pp 1901–1905).

  • Narin, F., Hamilton, K., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research Policy, 26(3), 317–330.

    Article  Google Scholar 

  • Narin, F., & Olivastro, D. (1998). Linkage between patents and papers: An interim EPO/US comparison. Scientometrics, 41(1–2), 51–59.

    Article  Google Scholar 

  • Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E, 70(5), 056131.

    Article  Google Scholar 

  • Perng, D. B., & Chen, S. H. (2011). Directional textures auto-inspection using discrete cosine transform. International Journal of Production Research, 49(23), 7171–7187.

    Article  Google Scholar 

  • Ribeiro, L. C., Ruiz, R. M., Bernardes, A. T., & Albuquerque, E. M. (2010). Matrices of science and technology interactions and patterns of structured growth: Implications for development. Scientometrics, 83(1), 55–75.

    Article  Google Scholar 

  • Salton, G., & McGill, J. M. (1983). Introduction to modern information retrieval. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Shalhevet, S., Haruvy, N., & Spharim, I. (2001). Management strategies for agricultural biotechnology in small countries: A case study of Israel. Biotechnology Advances, 19(7), 539–554.

    Article  Google Scholar 

  • Shibata, N., Kajikawa, Y., & Sakata, I. (2011). Detecting potential technological fronts by comparing scientific papers and patents. Foresight, 13(5), 51–60.

    Article  Google Scholar 

  • Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 68(3), 595–610.

    Article  Google Scholar 

  • Small, H., & Griffith, B. (1974). The structure of scientific literatures, I: Identifying and graphing specialities. Science Studies, 4, 17–40.

    Article  Google Scholar 

  • Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., & Deleus, F. (2002). Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics, 54(3), 399–420.

    Article  Google Scholar 

  • Wu, H. C., Chen, H. Y., & Lee, K. Y. (2010). Unveiling the core technology structure for companies through patent information. Technological Forecasting and Social Change, 77(7), 1167–1178.

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by the National Science Council, Taiwan, under contract No. NSC101-2811-B-002-003-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dar-Zen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, MH., Chen, SH., Lin, CY. et al. Exploring temporal relationships between scientific and technical fronts: a case of biotechnology field. Scientometrics 98, 1085–1100 (2014). https://doi.org/10.1007/s11192-013-1054-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-013-1054-0

Keywords

Navigation