Skip to main content
Log in

Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Understanding the evolution of research topics is crucial to detect emerging trends in science. This paper proposes a new approach and a framework to discover the evolution of topics based on dynamic co-word networks and communities within them. The NEViewer software was developed according to this approach and framework, as compared to the existing studies and science mapping software tools, our work is innovative in three aspects: (a) the design of a longitudinal framework based on the dynamics of co-word communities; (b) it proposes a community labelling algorithm and community evolution verification algorithms; (c) and visualizes the evolution of topics at the macro and micro level respectively using alluvial diagrams and coloring networks. A case study in computer science and a careful assessment was implemented and demonstrating that the new method and the software NEViewer is feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amitay, E., Carmel, D., Herscovici, M., et al. (2004). Trend detection through temporal link analysis. Journal of the American Society for Information Science and Technology, 55(14), 1270–1281.

    Article  Google Scholar 

  • Ball, B., Karrer, B., & Newman, M. (2011). Efficient and principled method for detecting communities in networks. Physical Review E, 84(3), 36103.

    Article  Google Scholar 

  • Berger-Wolf, T. Y., & Saia, J. (2006). A framework for analysis of dynamic social networks. In Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, Philadelphia, PA, USA, pp. 523–528.

  • Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.

    Article  Google Scholar 

  • Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255.

    Article  Google Scholar 

  • Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.

    Article  Google Scholar 

  • Bródka, P., Saganowski, S., & Kazienko, P. (2013). GED: The method for group evolution discovery in social networks. Social Network Analysis and Mining, 3(1), 1–14.

    Article  Google Scholar 

  • Buente, W., & Robbin, A. (2008). Trends in Internet information behavior, 2000–2004. Journal of the American Society for Information Science and Technology, 59(11), 1743–1760.

    Article  Google Scholar 

  • Chavalarias, D., & Cointet, J. P. (2013). Phylomemetic patterns in science evolution—the rise and fall of scientific fields. PLoS ONE, 8(2), e54847.

    Article  Google Scholar 

  • Chen, C. (2005). CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.

    Article  Google Scholar 

  • Chen, P., & Redner, S. (2010). Community structure of the physical review citation network. Journal of Informetrics, 4(3), 278–290.

    Article  Google Scholar 

  • Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011a). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402.

    Article  Google Scholar 

  • Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011b). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146–166.

    Article  Google Scholar 

  • Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630.

    Article  Google Scholar 

  • Costa, L. F., Rodrigues, F. A., Travieso, G., et al. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), 167–242.

    Article  Google Scholar 

  • Ding, Y. (2011). Community detection: Topological vs. topical. Journal of Informetrics, 5(4), 498–514.

    Article  Google Scholar 

  • Garfield, E. (1994). Scientography: Mapping the tracks of science. Current Contents: Social & Behavioural Sciences, 7, 5–10.

    Google Scholar 

  • Goth, G. (2012). The science of better science. Communication of ACM, 55(2), 13–15.

    Article  Google Scholar 

  • Guimerà, R., Sales-Pardo, M., & Amaral, L. A. N. (2006). Classes of complex networks defined by role-to-role connectivity profiles. Nature Physics, 3(1), 63–69.

    Article  Google Scholar 

  • Herrera, M., Roberts, D. C., & Gulbahce, N. (2010). Mapping the evolution of scientific fields. PLoS ONE, 5(5), e10355.

    Article  Google Scholar 

  • Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp 50–57). New York: ACM.

  • Klavans, R., & Boyack, K. W. (2006). Identifying a better measure of relatedness for mapping science. Journal of the American Society for Information Science and Technology, 57(2), 251–263.

    Article  Google Scholar 

  • Kontostathis, A., De, I., Holzman, L. E., & Pottenger, W. M. (2004). Use of term clusters for emerging trend detection. Technical Report. 2004, Available from webpages.ursinus.edu/akontostathis/kontostathisETD.ps.

  • Kontostathis, A., Galitsky, L., Pottenger, W. M., Roy, S., & Phelps, D. J. (2003). A survey of emerging trend detection in textual data mining. In M. Berry (Ed.), A comprehensive survey of text mining (pp. 185–224). Heidelberg: Springer.

    Google Scholar 

  • Lambiotte, R., & Panzarasa, P. (2009). Communities, knowledge creation, and information diffusion. Journal of Informetrics, 3(3), 180–190.

    Article  Google Scholar 

  • Lancichinetti, A., & Fortunato, S. (2009). Community detection algorithms: A comparative analysis. Physical Review E, 80(5), 56117.

    Article  Google Scholar 

  • Le, M. H., Ho, T. B., & Nakamori, Y. (2005). Detecting emerging trends from scientific corpora. International Journal of Knowledge and Systems Sciences, 2(2), 53–59.

    Google Scholar 

  • Lee, J. Y., Kim, H., & Kim, P. J. (2010). Domain analysis with text mining: Analysis of digital library research trends using profiling methods. Journal of Information Science, 36(2), 144–161.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2008). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362.

    Article  Google Scholar 

  • Lin, Y. R., Chi, Y., Zhu, S., Sundaram, H., & Tseng, B. L. (2008). Facetnet: A framework for analyzing communities and their evolutions in dynamic networks. In Proceeding of the 17th international conference on World Wide Web, April 21–25, Beijing, China.

  • Liu, X., Jiang, T. T., & Ma, F. C. (2013). Collective dynamics in knowledge networks: Emerging trends analysis. Journal of Informetrics, 7(2), 425–438.

    Article  Google Scholar 

  • Mane, K. K., & Börner, K. (2004). Mapping topics and topic bursts in PNAS. Proceedings of the National Academy of Sciences of the United States of America, 101, 5287–5290.

    Article  Google Scholar 

  • McCain, K. W. (2008). Assessing an author’s influence using time series historiographic mapping: The oeuvre of Conrad Hal Waddington (1905–1975). Journal of the American Society for Information Science and Technology, 59(4), 510–525.

    Article  Google Scholar 

  • Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 26113.

    Article  Google Scholar 

  • Palla, G., Barabasi, A. L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446(7136), 664–667.

    Article  Google Scholar 

  • Palla, G., Derényi, I., Farkas, I., et al. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043), 814–818.

    Article  Google Scholar 

  • Pottenger, W. M., & Yang, T. H. (2001). Detecting emerging concepts in textual data mining. In Computational information retrieval. Philadelphia, PA: Society for Industrial and Applied Mathematics.

  • Price, D. J., & de Solla. (1963). Little science, big science. New York: Columbia University Press.

  • Ronhovde, P., & Nussinov, Z. (2009). Multiresolution community detection for megascale networks by information-based replica correlations. Physical Review E, 80(1), 016109.

  • Rosvall, M., & Bergstrom, C. (2007). An information-theoretic framework for resolving community structure in complex networks. Proceeding of the National Academy of Sciences of the United States of America, 104(18), 7327–7331.

  • Rosvall, M., & Bergstrom, C. (2008). Maps of random walks on complex networks reveal community structure. Proceeding of the National Academy of Sciences of the United States of America, 105(4), 1118–1123.

  • Rosvall, M., & Bergstrom, C. T. (2010). Mapping change in large networks. PLoS ONE, 5(1), e8694.

    Article  Google Scholar 

  • Roy, S., Gevry, D., & Pottenger, W. M. (2002). Methodologies for trend detection in textual data mining. Proceedings of the Textmine’02 Workshop at the 2nd SIAM Conference on Data Mining. From http://www.cse.lehigh.edu/~billp/pubs/ETDMethodologies.pdf.

  • Schiebel, E., Hörlesberger, M., Roche, I., et al. (2010). An advanced diffusion model to identify emergent research issues: The case of optoelectronic devices. Scientometrics, 83(3), 765–781.

    Article  Google Scholar 

  • Sun, J., Faloutsos, C., Papadimitriou, S, et al. (2007). GraphScope: Parameter-free mining of large time-evolving graphs. In The Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 687–696). New York: ACM.

  • Tu, Y. N., & Seng, J. L. (2012). Indices of novelty for emerging topic detection. Information Processing and Management, 48(2), 303–325.

    Article  Google Scholar 

  • van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651.

    Article  Google Scholar 

  • van Eck, N. J., Waltman, L., Noyons, E. C. M., et al. (2010). Automatic term identification for bibliometric mapping. Scientometrics, 82(3), 581–596.

    Article  Google Scholar 

  • Wallace, M. L., Gingras, Y., & Duhon, R. (2009). A new approach for detecting scientific specialties from raw cocitation networks. Journal of the American Society for Information Science and Technology, 60(2), 240–246.

    Article  Google Scholar 

  • Wang, X. G. (2013). Forming mechanisms and structures of a knowledge transfer network: Theoretical and simulation research. Journal of Knowledge Management, 17(2), 278–289.

    Article  Google Scholar 

  • Wang, X. G., Jiang, T. T., & Li, X. Y. (2010). Structures and dynamics of scientific knowledge networks: An empirical analysis based on a co-word network. Chinese Journal of Library and Information Science, 3, 19–36.

    Google Scholar 

  • Wu, B., Wang, B., & Yang, S. Q. (2011). Framework for tracking the event-based evolution in social networks. Journal of Software, 22(7), 1488–1502.

Download references

Acknowledgments

We thank all who helped to improve NEViewer by giving us very valuable suggestions and comments. This project is supported by the National Natural Science Foundation of China (Grant No. 71003078, Grant No. 71173249), the Fundamental Research Funds for the Central Universities, and the Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cheng, Q. & Lu, W. Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks. Scientometrics 101, 1253–1271 (2014). https://doi.org/10.1007/s11192-014-1347-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-014-1347-y

Keywords

Navigation