Skip to main content
Log in

Cext-N index: a network node centrality measure for collaborative relationship distribution

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This paper focuses on methods to study the distribution of an author’s collaborative relationships among different communities in co-authorship networks. Based on the index of extensity centrality, we propose a new index and name it extensity centrality-Newman (Cext-N). Drawing upon a data set of three top journals (MISQ, ISR, JMIS) between 2010 and 2012 in Information Systems, we verify and describe the application and value of our approach. Due to the fact that the starting points among Cext-N and classical indices are quite different and a single index is not advocated in scientific evaluation, we can select the indices in actual application by considering their starting points to ensure the value of each index is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbasi, A., Altmann, J., & Hossain, L. (2011). Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. Journal of Informetrics, 5(4), 594–607.

    Article  Google Scholar 

  • Abbasi, A., Hossaina, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403–412.

    Article  Google Scholar 

  • Arenas, A., Cabrales, A., Díaz-Guilera, A., Guimerà, R., & Vega-Redondo, F. (2003). Search and congestion in complex networks. Statistical Mechanics of Complex Networks, 625, 175–194.

    Article  Google Scholar 

  • Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2008). Evolution of the social network of scientific collaborations. Physica A, 311(3–4), 590–614.

    Google Scholar 

  • Barrat, A., Barthélémy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The architecture of complex weighted networks. Proceedings of the National Academy of Sciences, 101(11), 3747–3752.

    Article  Google Scholar 

  • Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 5(10), 1–12.

    Google Scholar 

  • Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113–120.

    Article  Google Scholar 

  • Bonacich, P., & Lloyd, P. (2001). Eigenvector-like measures of centrality for asymmetric relations. Social Networks, 23(3), 191–201.

    Article  Google Scholar 

  • Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). UCINET for windows: Software for social network analysis. Harvard: Analytic Technologies.

    Google Scholar 

  • Borgatti, S. P., Everett, M. G., & Shirey, P. R. (1990). LS sets, Lambda sets and other cohesive subsets. Social Networks, 12(4), 337–357.

    Article  MathSciNet  Google Scholar 

  • Börner, K., Dall’asts, L., Ke, W., & Vespignani, A. (2005). Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams. Complexity, 10(4), 57–67.

    Article  Google Scholar 

  • Bozzo, E., & Franceschet, M. (2013). Resistance distance, closeness, and betweenness. Social Networks, 35(3), 460–469.

    Article  Google Scholar 

  • Cole, B. J. (1981). Dominance hierarchies in Leptothorax ants. Science, 212(4490), 83–84.

    Article  Google Scholar 

  • Costa, L. F., Oliveira, O. N., Jr, Travieso, G., Rodrigues, F. A., Boas, P. R. V., Antiqueira, L., et al. (2011). Analyzing and modeling real-world phenomena with complex networks: A survey of applications. Advances in Physics, 60(3), 329–412.

    Article  Google Scholar 

  • Dangalchev, C. (2006). Residual closeness in networks. Physica A, 365(2), 556–564.

    Article  Google Scholar 

  • Davis, D., Lichtenwalter, R., & Chawla, N. V. (2013). Supervised methods for multirelational link prediction. Social Network Analysis and Mining, 3(2), 127–141.

  • Dorogovtsev, S. N., & Mendes, J. F. F. (2002). Evolution of networks. Advances in Physics, 51(4), 1079–1187.

    Article  Google Scholar 

  • Duch, J., & Arenas, A. (2005). Community detection in complex networks using extremal optimization. Physical Review E, 72(2), 027104.

    Article  Google Scholar 

  • Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651.

    Article  Google Scholar 

  • Fatt, C. K., Ujum, E. A., & Ratnavelu, K. (2010). The structure of collaboration in the Journal of Finance. Scientometrics, 85(3), 849–860.

    Article  Google Scholar 

  • Fiala, D., Rousselot, F., & Ježek, K. (2008). PageRank for bibliographic networks. Scientometrics, 76(1), 135–158.

    Article  Google Scholar 

  • Freeman, L. C. (1977). A set of measures of centrality based upon betweenness. Sociometry, 40, 35–41.

    Article  Google Scholar 

  • Freeman, L. C. (1979). Centrality in social networks conceptual clarification [J]. Social Network, 1(3), 215–239.

    Article  Google Scholar 

  • Freeman, L. C., Borgatti, S. P., & White, D. R. (1991). Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks, 13(2), 141–154.

    Article  MathSciNet  Google Scholar 

  • Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. PNAS, 99(12), 7821–7826.

    Article  MathSciNet  MATH  Google Scholar 

  • Groh, G., & Fuchs, C. (2011). Multi-modal social networks for modeling scientific fields. Scientometrics, 89(2), 569–590.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of America, 102(46), 16569–16572.

    Article  Google Scholar 

  • Jansen, D., Gortz, R. V., & Heidler, R. (2010). Knowledge production and the structure of collaboration networks in two scientific fields. Scientometrics, 83(1), 219–241.

    Article  Google Scholar 

  • Khan, G. F., & Park, H. W. (2013). The e-government research domain: A triple helix network analysis of collaboration at the regional, country, and institutional levels. Government Information Quarterly, 30(2), 182–193.

    Article  Google Scholar 

  • Kim, H., & Anderson, R. (2012). Temporal node centrality in complex networks. Physical Review E, 85(2), 026107.

    Article  Google Scholar 

  • Kleinberg, J. M. (1999a). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–632.

    Article  MathSciNet  MATH  Google Scholar 

  • Kleinberg, J. M. (1999b). Hubs, authorities, and communities. ACM Computing Surveys, 31(4), 1–3.

    MathSciNet  Google Scholar 

  • Liao, C. H. (2011). How to improve research quality? Examining the impacts of collaboration intensity and member diversity in collaboration networks. Scientometrics, 86(3), 741–761.

    Article  Google Scholar 

  • Lv, H. Y., & Feng, Y. Q. (2009). A measure of authors’ centrality in co-authorship networks based on the distribution of collaborative relationships. Scientometrics, 81(2), 499–511.

    Article  Google Scholar 

  • Newman, M. E. J. (2001a). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(1), 016132.

    Article  Google Scholar 

  • Newman, M. E. J. (2001b). The structure of scientific collaboration networks. PNAS, 98(2), 404–409.

    Article  MATH  Google Scholar 

  • Newman, M. E. J. (2004). Co-authorship networks and patterns of scientific collaboration. PNAS, 101(1), 5200–5205.

    Article  Google Scholar 

  • Newman, M. E. J. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39–54.

    Article  Google Scholar 

  • Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74(3), 1–22.

    Article  Google Scholar 

  • Newman, M. E. J. (2010). Networks: An introduction. Oxford University Press, 167–169, 183.

    Google Scholar 

  • Noh, J. D., & Rieger, H. (2004). Random walks on complex networks. Physics Review Letters, 92(11), 118701.1–118701.4.

    Article  Google Scholar 

  • Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251.

    Article  Google Scholar 

  • Opsahl, T., Colizza, V., Panzarasa, P., & Ramasco, J. J. (2008). Prominence and control: The weighted rich-club effect. Physical Review Letters, 101, 168702.

    Article  Google Scholar 

  • Page, L., Brin, S., Motwani, R., & Winograd. T. (1998). The PageRank citation ranking: Bringing order to the web. Technical Report. Stanford InfoLab.

  • Park, S., Park, M., Kim, H., Kim, H., Yoon, W., Yoon, T. B., et al. (2013). A closeness centrality analysis algorithm for workflow-supported social networks. In 2013 15th International conference on advanced communication technology (ICACT) (pp. 158–161).

  • Sabidussi, G. (1966). The centrality index of a graph. Psychomatrika, 31(4), 581–603.

    Article  MathSciNet  MATH  Google Scholar 

  • Salton, G., & Mcgill, M. J. (1983). Introduction to modern information retrieval. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Sekercioglu, C. H. (2008). Quantifying coauthor contributions. Science, 322, 371.

    Article  Google Scholar 

  • Souza, C. G., & Ferreira, M. L. A. (2013). Researchers profile, co-authorship pattern and knowledge organization in information science in Brazil. Scientometrics, 95(2), 673–687.

    Article  Google Scholar 

  • Stephenson, K., & Zelen, M. (1989). Rethinking centrality: Methods and examples. Social Networks, 11(1), 1–37.

    Article  MathSciNet  Google Scholar 

  • Tutzauer, F. (2007). Entropy as a measure of centrality in networks characterized by path-transfer flow. Social Networks, 29(2), 249–265.

    Article  Google Scholar 

  • Wehmuth, K., & Ziviani, A. (2013). DACCER: Distributed Assessment of the Closeness Centrality Ranking in complex networks. Computer Networks, 57(13), 2536–2548.

    Article  Google Scholar 

  • Yamashita, Y., & Okubo, Y. (2006). Patterns of scientific collaboration between Japan and France: Inter-sectoral analysis using Probabilistic Partnership Index (PPI). Scientometrics, 68(2), 303–324.

  • Yan, E., & Ding, Y. (2009). Applying centrality measures to impact analysis: A coauthorship network analysis. Journal of the American Society for Information Science and Technology, 60(10), 2107–2118.

    Article  Google Scholar 

  • Yan, X. B., Zhai, L., & Fan, W. G. (2013). C-index: A weighted network node centrality measure for collaboration competence. Journal of Informetrics, 7(1), 223–239.

    Article  Google Scholar 

  • Yin, L., Kretschmer, H., Hannemann, R. A., & Liu, Z. (2006). Connection and stratification in research collaboration: An analysis of the COLLNET network. Information Processing and Management, 42(6), 1599–1613.

    Article  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the National Natural Science Foundation of PRC (Nos. 71172157, 71201039, 71371059 and 71301035) and a grant from the Postdoctoral Science Foundation of China (#2014M550198), and the Fundamental Research Funds for the Central Universities (Grant No. HIT. HSS. 201205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guijie Zhang or Luning Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Liu, L., Feng, Y. et al. Cext-N index: a network node centrality measure for collaborative relationship distribution. Scientometrics 101, 291–307 (2014). https://doi.org/10.1007/s11192-014-1358-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-014-1358-8

Keywords

Navigation