Skip to main content
Log in

Dynamic evolution of collaborative networks: evidence from nano-energy research in China

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

In organizations, knowledge creation activities are embedded in collaborative networks and are influenced by their partners. Therefore, we examine how entire networks change over time in this study, as well as the reasoning behind the structures of ego networks based on unique scientific research discoveries published in the emerging cross-disciplinary field of nano-energy. These data were extracted from Science Citation Index Expanded. Specifically, we mainly focus on two dimensions of ego network changes: network growth and diversity. Results demonstrate the recent remarkable growth of inter-organizational collaborative networks in the nano-energy field and empirically prove that the subsequent growth and diversity of ego networks are caused by three coexisting driving forces (collaborative capacity, network status position and cohesion) that act collectively. Our study is conducted at the organizational level because we investigate the universities, research institutes and firms that participate in nano-energy scientific research and the collaborative networks formed through co-authorships among these institutions in knowledge creation processes. Moreover, our study has significant implications for the scientific research conducted by organizations in developing countries and emerging fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The 5-year moving window has also been implemented in our study process, but it did not affect the empirical results significantly.

  2. Although many universities, research institutes, and other types of organizations conduct nano-energy scientific research in China, our empirical test considered only organizations performing stable or long-term scientific research in the nano-energy field because of the repeated entries of new organizations and the exits of existing organizations.

References

  • Ahuja, G., Soda, G., & Zaheer, A. (2012). The genesis and dynamics of organizational networks. Organization Science, 23(2), 434–448.

    Article  Google Scholar 

  • Alivisatos, P., Cummings, P., De Yoreo, J., Fichthorn, K., Gates, B., Hwang, R., et al. (2005). Nanoscience research for energy needs. Alexandria, VA, USA: Report of the National Nanotechnology Initiative Grand Challenge Workshop.

  • Arora, S. K., Porter, A. L., Youtie, J., & Shapira, P. (2013). Capturing new developments in an emerging technology: An updated search strategy for identifying nanotechnology research outputs. Scientometrics, 95(1), 351–370.

    Article  Google Scholar 

  • Barabási, A.-L. (2012). Network science: Luck or reason. Nature, 489(7417), 507–508.

    Article  Google Scholar 

  • Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology, 92(5), 1170–1182.

  • Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.

    Article  Google Scholar 

  • Borgatti, S. P., & Halgin, D. S. (2011). On network theory. Organization Science, 22(5), 1168–1181.

    Article  Google Scholar 

  • Bouty, I. (2000). Interpersonal and interaction influences on informal resource exchanges between R&D researchers across organizational boundaries. Academy of Management Journal, 43(1), 50–65.

    Article  Google Scholar 

  • Broad, W. J. (1981). The publishing game: Getting more for less. Science, 211(4487), 1137–1139.

    Article  MathSciNet  Google Scholar 

  • Buchmann, T., & Pyka, A. (2013). The evolution of innovation networks: The case of a German automotive network. FZID discussion papers, No. 70-2013. http://nbn-resolving.de/urn:nbn:de:bsz:100-opus-8338.

  • Burt, R. S. (1992). Structural holes: The social structure of competition. Cambridge: Harvard University Press.

    Google Scholar 

  • Cannella, A. A., & McFadyen, M. A. (2013). Changing the exchange the dynamics of knowledge worker ego networks. Journal of Management. doi:10.1177/0149206313511114.

  • Cattani, G., & Ferriani, S. (2008). A core/periphery perspective on individual creative performance: Social networks and cinematic achievements in the Hollywood film industry. Organization Science, 19(6), 824–844.

    Article  Google Scholar 

  • Chandler, D., Haunschild, P. R., Rhee, M., & Beckman, C. M. (2013). The effects of firm reputation and status on interorganizational network structure. Strategic Organization, 11(3), 217–244.

    Article  Google Scholar 

  • Connelly, M. C., & Sekhar, J. A. (2012). US energy production activity and innovation. Technological Forecasting and Social Change, 79(1), 30–46.

    Article  Google Scholar 

  • Contractor, N. S., Wasserman, S., & Faust, K. (2006). Testing multitheoretical, multilevel hypotheses about organizational networks: An analytic framework and empirical example. Academy of Management Review, 31(3), 681–703.

    Article  Google Scholar 

  • Cricelli, L., & Grimaldi, M. (2010). Knowledge-based inter-organizational collaborations. Journal of Knowledge Management, 14(3), 348–358.

    Article  Google Scholar 

  • Demirkan, I., Deeds, D. L., & Demirkan, S. (2013). Exploring the role of network characteristics, knowledge quality, and inertia on the evolution of scientific networks. Journal of Management, 39(6), 1462–1489.

    Article  Google Scholar 

  • Eagle, N., Macy, M., & Claxton, R. (2010). Network diversity and economic development. Science, 328(5981), 1029–1031.

    Article  MATH  MathSciNet  Google Scholar 

  • Ebbers, J. J., & Wijnberg, N. M. (2010). Disentangling the effects of reputation and network position on the evolution of alliance networks. Strategic Organization, 8(3), 255–275.

    Article  Google Scholar 

  • EIA U. (2014). International energy outlook 2014. Washington, DC: United States Energy Information Administration. http://www.eia.gov/countries/cab.cfm?fips=CH

  • Forti, E., Franzoni, C., & Sobrero, M. (2013). Bridges or isolates? Investigating the social networks of academic inventors. Research Policy, 42(8), 1378–1388.

    Article  Google Scholar 

  • Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.

    Article  Google Scholar 

  • Fromer, N. A., & Diallo, M. S. (2013). Nanotechnology and clean energy: Sustainable utilization and supply of critical materials. Journal of Nanoparticle Research, 15(11), 2011.

    Article  Google Scholar 

  • Gans, J. S., & Murray, F. (2013). Credit history: The changing nature of scientific credit. National Bureau of Economic Research (NBER working paper no. w19538). http://www.nber.org/papers/w19538

  • Goerzen, A., & Beamish, P. W. (2005). The effect of alliance network diversity on multinational enterprise performance. Strategic Management Journal, 26(4), 333–354.

    Article  Google Scholar 

  • Gonzalez-Brambila, C. N., Veloso, F. M., & Krackhardt, D. (2013). The impact of network embeddedness on research output. Research Policy, 42(9), 1555–1567.

    Article  Google Scholar 

  • Granados, F. J., & Knoke, D. (2013). Organizational status growth and structure: An alliance network analysis. Social Networks, 35(1), 62–74.

    Article  Google Scholar 

  • Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380.

  • Guan, J., & Liu, N. (2014). Measuring scientific research in emerging nano-energy field. Journal of Nanoparticle Research, 16(4), 2356.

    Article  MathSciNet  Google Scholar 

  • Guan, J., & Zhao, Q. (2013). The impact of university–industry collaboration networks on innovation in nanobiopharmaceuticals. Technological Forecasting and Social Change, 80(7), 1271–1286.

    Article  Google Scholar 

  • Gulati, R., & Gargiulo, M. (1999). Where do interorganizational networks come from? American Journal of Sociology, 104(5), 1439–1493.

    Article  Google Scholar 

  • Gulati, R., Sytch, M., & Tatarynowicz, A. (2012). The rise and fall of small worlds: Exploring the dynamics of social structure. Organization Science, 23(2), 449–471.

    Article  Google Scholar 

  • IWEP. (2013). The Chinese academy of social sciences institute of world economics and politics, World Energy China Outlook 20132014. Beijing, China: Social Sciences Academic Press.

  • Jensen, M., & Roy, A. (2008). Staging exchange partner choices: When do status and reputation matter? Academy of Management Journal, 51(3), 495–516.

    Article  Google Scholar 

  • Kogut, B., & Zander, U. (1992). Knowledge of the firm, combinative capabilities, and the replication of technology. Organization Science, 3(3), 383–397.

    Article  Google Scholar 

  • Koka, B. R., Madhavan, R., & Prescott, J. E. (2006). The evolution of interfirm networks: Environmental effects on patterns of network change. Academy of Management Review, 31(3), 721–737.

    Article  Google Scholar 

  • Lee, J. J. (2010). Heterogeneity, brokerage, and innovative performance: Endogenous formation of collaborative inventor networks. Organization Science, 21(4), 804–822.

    Article  Google Scholar 

  • Lee, K., & Lee, S. (2013). Patterns of technological innovation and evolution in the energy sector: A patent-based approach. Energy Policy, 59, 415–432.

    Article  Google Scholar 

  • Lee, S., Lee, H. J., & Yoon, B. (2012). Modeling and analyzing technology innovation in the energy sector: Patent-based HMM approach. Computers & Industrial Engineering, 63(3), 564–577.

    Article  Google Scholar 

  • Leung, R. C. (2013). Networks as sponges: International collaboration for developing nanomedicine in China. Research Policy, 42(1), 211–219.

    Article  Google Scholar 

  • Li, E. Y., Liao, C. H., & Yen, H. R. (2013). Co-authorship networks and research impact: A social capital perspective. Research Policy, 42(9), 1515–1530.

    Article  Google Scholar 

  • Ma, N., & Guan, J. (2005). An exploratory study on collaboration profiles of Chinese publications in molecular biology. Scientometrics, 65(3), 343–355.

    Article  MathSciNet  Google Scholar 

  • Makadok, R. (2001). Toward a synthesis of the resource-based and dynamic-capability views of rent creation. Strategic Management Journal, 22(5), 387–401.

    Article  Google Scholar 

  • Menéndez-Manjón, A., Moldenhauer, K., Wagener, P., & Barcikowski, S. (2011). Nano-energy research trends: Bibliometrical analysis of nanotechnology research in the energy sector. Journal of Nanoparticle Research, 13(9), 3911–3922.

    Article  Google Scholar 

  • Miao, X. (2014). Science ethics: Young scientists speak. Science, 345(6192), 24–25.

    Article  Google Scholar 

  • Milanov, H., & Shepherd, D. A. (2013). The importance of the first relationship: The ongoing influence of initial network on future status. Strategic Management Journal, 34(6), 727–750.

    Article  Google Scholar 

  • Obstfeld, D. (2005). Social networks, the tertius iungens orientation, and involvement in innovation. Administrative Science Quarterly, 50(1), 100–130.

    Google Scholar 

  • Phelps, C., Heidl, R., & Wadhwa, A. (2012). Knowledge, networks, and knowledge networks a review and research agenda. Journal of Management, 38(4), 1115–1166.

    Article  Google Scholar 

  • Podolny, J. M. (2001). Networks as the pipes and prisms of the market. American Journal of Sociology, 107(1), 33–60.

    Article  Google Scholar 

  • Podolny, J. M. (2005). Status signals: A sociological study of market competition. Princeton: Princeton University Press.

    Google Scholar 

  • Ronda-Pupo, G. A., & Guerras-Martín, L. Á. (2010). Dynamics of the scientific community network within the strategic management field through the strategic management journal 1980–2009: The role of cooperation. Scientometrics, 85(3), 821–848.

    Article  Google Scholar 

  • Rosenkopf, L., & Padula, G. (2008). Investigating the microstructure of network evolution: Alliance formation in the mobile communications industry. Organization Science, 19(5), 669–687.

    Article  Google Scholar 

  • Sci2Team. (2009). Science of science (Sci2) tool. Bloomington: Indiana University and SciTech Strategies. http://sci2.cns.iu.edu

  • Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3–55.

    Article  Google Scholar 

  • Simcoe, T. S., & Waguespack, D. M. (2011). Status, quality, and attention: What’s in a (missing) name? Management Science, 57(2), 274–290.

    Article  Google Scholar 

  • So, D. S., Kim, C. W., Chung, P. S., & Jhon, M. S. (2012). Nanotechnology policy in Korea for sustainable growth. Journal of Nanoparticle Research, 14(6), 854.

    Article  Google Scholar 

  • Sosa, M. E. (2011). Where do creative interactions come from? The role of tie content and social networks. Organization Science, 22(1), 1–21.

    Article  MathSciNet  Google Scholar 

  • Stuart, T. E. (1998). Network positions and propensities to collaborate: An investigation of strategic alliance formation in a high-technology industry. Administrative Science Quarterly, 43(3), 668–698.

  • Sun, Y.-T., & Liu, F.-C. (2013). Measuring international trade-related technology spillover: A composite approach of network analysis and information theory. Scientometrics, 94(3), 963–979.

    Article  Google Scholar 

  • Tegart, G. (2009). Energy and nanotechnologies: Priority areas for Australia’s future. Technological Forecasting and Social Change, 76(9), 1240–1246.

    Article  Google Scholar 

  • Uzzi, B. (1997). Social structure and competition in interfirm networks: The paradox of embeddedness. Administrative Science Quarterly, 42(1), 35–67.

  • Wang, Z.-Z., & Zhu, J. J. (2014). Homophily versus preferential attachment: Evolutionary mechanisms of scientific collaboration networks. International Journal of Modern Physics C, 25(05), 40014.

    Article  Google Scholar 

  • Wasserman, S. (1994). Social network analysis: Methods and applications (Vol. 8). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  • Xie, F., & Levinson, D. (2007). Measuring the structure of road networks. Geographical analysis, 39(3), 336–356.

    Article  Google Scholar 

  • Zaheer, A., & Soda, G. (2009). Network evolution: The origins of structural holes. Administrative Science Quarterly, 54(1), 1–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiancheng Guan.

Appendix: Definition of search queries for nano-energy articles in the SCI-E database

Appendix: Definition of search queries for nano-energy articles in the SCI-E database

Searching terms

Nanotechnology

 #1

TS = (nano*)

 #2

TS = ((“quantum dot*” OR “quantum well*” OR “quantum wire*”) NOT nano*)

 #3

TS = (((“self assembl*” OR “self organiz*” OR “directed assembl*”) AND MolEnv-I) NOT nano*)

 #4

TS = ((“molecul* motor*” OR “molecul* ruler*” OR “molecul* wir*” OR “molecul* devic*” OR “molecular engineering” OR “molecular electronic*” OR “single molecul*” OR fullerene* OR buckyball OR buckminsterfullerene OR C60 OR “C-60” OR methanofullerene OR metallofullerene OR SWCNT OR MWCNT OR “coulomb blockad*” OR bionano* OR “Langmuir-Blodgett” OR Coulombstaircase* OR “PDMS stamp*” OR graphene OR “dye-sensitized solar cell” OR DSSC OR ferrofluid* OR “core-shell”) NOT nano*)

 #5

TS = ((((TEM or STM or EDX or AFM or HRTEM or SEM or EELS or SERS or MFM) OR “atom* force microscop*” OR “tunnel* microscop*” OR “scanning probe microscop*” OR “transmission electron microscop*” OR “scanning electron microscop*” OR “energy dispersive X-ray” OR “xray photoelectron*” OR “x-ray photoelectron” OR “electron energy loss spectroscop*” OR “enhanced raman-scattering” OR “surface enhanced raman scattering” OR “single molecule microscopy” OR “focused ion beam” OR “ellipsometry” OR “magnetic force microscopy”) AND MolEnv-R) NOT nano*)

 #6

TS = (((NEMS OR Quasicrystal* OR “quasi-crystal*” OR “quantum size effect” OR “quantum device”) AND MoleEnv-I) NOT nano*)

 #7

TS = (((biosensor* OR NEMS OR (“sol gel*” OR solgel*) OR dendrimer* OR CNT OR “soft lithograph*” OR “electron beam lithography” OR “e-beam lithography” OR “molecular simul*” OR “molecular machin*” OR “molecular imprinting” OR “quantum effect*” OR “surface energy” OR “molecular sieve*” OR “mesoporous material*” OR “mesoporous silica” OR “porous silicon” OR “zeta potential” OR “epitax*”) AND MolEnv-R) NOT nano*)

 #8

SO = (Fullerene* OR IEEE Transactions on Nano* OR Journal of Nano* OR Nano* OR Materials Science Engineering C* OR ACS Nano OR Current Nanoscience OR Digest Journal of Nanomaterials and Biostructures OR IEE Proceedings Nanobiotechnology OR IET Nanobiotechnology OR International Journal of Nanomedicine OR International Journal of Nanotechnology OR Journal of Biomedical Nanotechnology OR Journal of Computational and Theoretical Nanoscience OR Journal of Experimental Nanoscience OR Nature Nanotechnology OR Photonics and Nanostructures* OR Wiley Interdisciplinary Reviews Nano*) NOT TS = (nano*)

 #9

TS = (plankton* OR n*plankton OR m*plankton OR b*plankton OR p*plankton OR z*plankton OR nanoflagel* OR nanoalga* OR nanoprotist* OR nanofauna* OR nano*aryote* OR nanoheterotroph* OR nanophtalm* OR nanomeli* OR nanophyto* OR nanobacteri* OR *270 organism names beginning with nano* OR nano2 OR nano3 OR nanos OR nanog OR nanor OR nanoa OR nano- OR nanog- OR nanoa- OR nanor- OR nanosatellite* OR 270 organism names beginning with nano*)

 #10

TS = (nanometer* OR nano-metre OR nano-meter OR nano-metre OR nanosecond* OR nano-second OR nanomolar* OR nano-molar OR nanomole(s) OR nanogram* OR nano-gram OR nanoliter* OR nanolitre* OR nano-liter OR nano-litre*)

Total Nanotechnology = ((#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8) NOT #9 NOT (#10 NOT (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8)))

Energy

 #1

TS = (energ* SAME (“energy sector” OR “power source*” OR renewable* OR “power supply” OR “energy convers*” OR “energy storag*” OR sustainab* OR use* OR “distribution loss*” OR harvest* OR “wind energy” OR eolic OR tidal OR biomas* OR geotherm* OR hydroelectric* OR (wave SAME (ocean OR sea)) OR fos$il OR oil OR “natural gas” OR coal OR “nuclear energy” OR fuel OR tide OR petroleum OR heat$storag* OR thermal$insulator OR batter* OR super$capacitor* OR capacitor* OR flywheel* OR photovoltaic* OR “solar cell*” OR power*station OR carge$carrier OR “fuel cell*” OR electro$catalys* OR photoelectrochem* OR thermo$electric* OR turbin* OR transducer* OR “water photoelectrolys*” OR power$generat* OR biofuel* OR biodiesel* OR water$oxidation OR “combustion engine” OR “thermal rectifier” OR “hydrogen* production”))

 #2

TS = (photosynthesis OR obesity OR diet* OR food OR cellular OR glucose OR DNA OR astrophys* OR astronom* OR chlorop* OR phyto*) OR SO = (astrophys* OR astronom* OR biolog* OR nutriti* OR botanic* OR American Journal of Clinical Nutrition OR Monthly Notices of the Royal Astronomical Society OR Biotechnology and Bioengineering OR Annual Review of Nutrition OR Journal of Geophysical Research-Space Physics)

Total Energy = #1 NOT #2

Total Nano-energy = Total Nanotechnology AND Total Energy

  1. Searching terms for nanotechnology came from Arora et al. (2013). Given spatial limitations, the details of “MolEnv-I”, “MolEnv-R” and “270 organism names beginning with nano*” were not listed in this table, but they all can be found in Arora et al. (2013); and searching terms for energy mainly came from Menéndez-Manjón et al. (2011). We supplemented some energy searching words coming from Connelly and Sekhar (2012), Lee et al. (2012) and Lee and Lee (2013)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Guan, J. Dynamic evolution of collaborative networks: evidence from nano-energy research in China. Scientometrics 102, 1895–1919 (2015). https://doi.org/10.1007/s11192-014-1508-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-014-1508-z

Keywords

Navigation