Skip to main content
Log in

Magnetic nanoparticles research: a scientometric analysis of development trends and research fronts

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The research on magnetic nanoparticles attracts scientists from broad disciplines including chemistry, physics, and biomedical science. It is a great challenge for scientists from different background to discover the development trends and research fronts that are embodied in publications from different disciplines. This article aims to portray the global research profile and detect research fronts of magnetic nanoparticles by taking advantages of scientometric approaches. A total of 13,464 publications regarding magnetic nanoparticles indexed by Web of Science during 2000–2015 were used for a detailed analysis of the global magnetic nanoparticles research performance. The 500 most-cited publications on magnetic nanoparticles were analyzed for the temporal–spatial distribution characteristics as well as co-citation networks and co-word networks to identify research fronts and development trends. This study revealed that ‘block-copolymers’ attracted most attentions in high quality research of MNPs. Researches on yadh-bound MNPs were among the most hot MNPs topics. Recently, researches on catalysis characteristics emerged as the hot MNPs topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ahn, C. H., Choi, J. W., & Cho, J. W. (2004). Nanomagnetics for biomedical applications. In H. S. Nalwa (Ed.), Encyclopedia of nanoscience and nanotechnology (Vol. 6, pp. 815–821). Stevenson Ranch: American Scientific Publishers.

  • Bergemann, C., Müller-Schulte, D., Oster, J., à Brassard, L., & Lübbe, A. S. (1999). Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications. Journal of Magnetism and Magnetic Materials, 194, 45–52.

    Article  Google Scholar 

  • Berry, C. C., Wells, S., Charles, S., & Curtis, A. (2003). Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials, 24, 4551–4557.

    Article  Google Scholar 

  • Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25, 163–177.

    Article  MATH  Google Scholar 

  • Chen, C. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. In Proceedings of the National Academy of Sciences of the United States of America, 101 Suppl., pp. 5303–5310.

  • Chen, C. (2006). CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57, 359–377.

    Article  Google Scholar 

  • Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of co-citation clusters: A multiple-perspective co-citation analysis. Journal of the American Society for Information Science and Technology, 61, 1386–1409.

    Article  Google Scholar 

  • Chen, C., Dubin, R., & Kim, M. C. (2014). Emerging trends and new developments in regenerative medicine: a scientometric update (2000–2014). Expert Opinion on Biological Therapy, 14, 1295–1317.

    Article  Google Scholar 

  • Chorny, M., Fishbein, I., Yellen, B. B., Alferiev, I. S., Bakay, M., Ganta, S., et al. (2010). Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proceedings of the National Academy of Sciences of the United States of America, 107, 8346–8351.

    Article  Google Scholar 

  • Dobson, J. (2006). Magnetic nanoparticles for drug delivery. Drug Development Research, 67, 55–60.

    Article  Google Scholar 

  • Durán, J., Arias, J., Gallardo, V., & Delgado, A. (2008). Magnetic colloids as drug vehicles. Journal of Pharmaceutical Sciences, 97, 2948–2983.

    Article  Google Scholar 

  • Elliott, D. W., & Zhang, W.-X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science and Technology, 35, 4922–4926.

    Article  Google Scholar 

  • Freeman, L. C. (1977). A set of measuring centrality based on betweenness. Sociometry, 40, 35–41.

    Article  Google Scholar 

  • Frey, N. A., & Sun, S. (2010). Magnetic nanoparticle for information storage applications. In C. Altavilla & E. Ciliberto (Eds.), Inorganic Nanoparticles: Synthesis, Applications, and Perspectives (pp. 33–67). Boca Raton: CRC Press.

  • Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K., & Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 22, 969–976.

    Article  Google Scholar 

  • Gleich, B., & Weizenecker, J. (2005). Tomographic imaging using the nonlinear response of magnetic particles. Nature, 435, 1214–1217.

    Article  Google Scholar 

  • Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021.

    Article  Google Scholar 

  • He, L., Wang, M., Ge, J., & Yin, Y. (2012). Magnetic assembly route to colloidal responsive photonic nanostructures. Accounts of Chemical Research, 45, 1431–1440.

    Article  Google Scholar 

  • Hyeon, T. (2013). Chemical synthesis of magnetic nanoparticles. Chemical Communications, 8, 927–934.

    Google Scholar 

  • Kavre, I., Kostevc, G., Kralj, S., Vilfan, A., & Babič, D. (2014). Fabrication of magneto-responsive microgears based on magnetic nanoparticle embedded PDMS. RSC Advances, 4, 38316–38322.

    Article  Google Scholar 

  • Leydesdorff, L., & Milojevic, S. (2013). Scientometrics. arXiv:1208.4566.

  • Lu, A. H., Schmidt, W., Matoussevitch, N., Bönnemann, H., Spliethoff, B., Tesche, B., et al. (2004). Nanoengineering of a magnetically separable hydrogenation catalyst. Angewandte Chemie International Edition, 43, 4303–4306.

    Article  Google Scholar 

  • Lu, A. H., Salabas, E. L., & Schuth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie—International Edition, 46, 1222–1244.

    Article  Google Scholar 

  • Mahendran, V. (2012). Nanofluid based opticalsensor for rapid visual inspection of defects in ferromagnetic materials. Applied Physics Letters, 100, 073104.

    Article  Google Scholar 

  • Malaiya, A., & Vyas, S. P. (1988). Preparation and characterization of indomethacin magnetic nanoparticles. Journal of Microencapsulation, 5, 243–253.

    Article  Google Scholar 

  • Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446.

    Article  Google Scholar 

  • Mornet, S., Vasseur, S., Grasset, F., Verveka, P., Goglio, G., Demourgues, A., et al. (2006). Magnetic nanoparticle design for medical applications. Progress in Solid State Chemistry, 34, 237–247.

    Article  Google Scholar 

  • Pankhurst, Q. A., Connolly, J., Jones, S. K., & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics, 36, 167–181.

    Article  Google Scholar 

  • Philip, V. M., & Felicia, L. J. (2013). A simple, in-expensive and ultrasensitive magnetic nanofluid based sensor for detection of cations, ethanol and ammonia. Journal of Nanofluids, 2, 112–119.

    Article  Google Scholar 

  • Philip, J., & Raj, S. (2006). Nanofluid with tunable thermal properties. Applied Physics Letters, 92, 043108.

    Article  Google Scholar 

  • Philip, J., Kumar, T. J., Kalyanasundaram, P., & Raj, B. (2003). Tunable optical filter. Measurement Science & Technology, 14, 1289–1294.

    Article  Google Scholar 

  • Sci2 Team. (2009). Science of Science (Sci2) Tool, Indiana University and SciTech Strategies, https://sci2.cns.iu.edu.

  • Smith, R. (2006). Peer review: a flawed process at the heart of science and journals. Journal of Royal Society of Medicine, 99, 178–182.

    Article  Google Scholar 

  • Sun, S. H., Murray, C. B., Weller, D., Folks, L., & Moser, A. (2000). Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 287, 1989–1992.

    Article  Google Scholar 

  • Sun, C., Lee, J. S., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60, 1252–1265.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (71573196) and the Fundamental Research Funds for the Central Universities of China (WUT 2016IB006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Chen, BL., Liu, K. et al. Magnetic nanoparticles research: a scientometric analysis of development trends and research fronts. Scientometrics 108, 1591–1602 (2016). https://doi.org/10.1007/s11192-016-2017-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-2017-z

Keywords

Navigation