Skip to main content
Log in

Scientific credit diffusion: Researcher level or paper level?

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Scientific impact evaluation is a long-standing problem in scientometrics. Graph-ranking methods are often employed to account for the collective diffusion process of scientific credit among researchers or their publications. One key issue, however, is still up in the air: what is the appropriate level for scientific credit diffusion, researcher level or paper level? In this paper, we tackle this problem via an anatomy of the credit diffusion mechanism underlying both researcher level and paper level graph-ranking methods. We find that researcher level and paper level credit diffusions are actually two aggregations of a fine-grained authorship level credit diffusion. We further find that researcher level graph-ranking methods may cause misallocation of scientific credit, but paper level graph-ranking methods do not. Consequently, researcher level methods often fail to identify researchers with high quality but low productivity. This finding indicates that scientific credit is fundamentally derived from “paper citing paper” rather than “researcher citing researcher”. We empirically verify our findings using American Physical Review publication dataset spanning over one century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with google’s pagerank algorithm. Journal of Informetrics, 1(1), 8–15.

    Article  Google Scholar 

  • Ding, Y. (2011). Applying weighted pagerank to author citation networks. Journal of the American Society for Information Science and Technology, 62(2), 236–245.

    Article  Google Scholar 

  • Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152.

    Article  MathSciNet  Google Scholar 

  • Fortin, J. M., & Currie, D. J. (2013). Big science vs. little science: How scientific impact scales with funding. PLoS One, 8(6), e65263.

    Article  Google Scholar 

  • Garfield, E. (1972). Citation analysis as a tool in journal evaluation–Journals can be ranked by frequency and impact of citations for science policy studies. Science, 178(4060), 471–479.

    Article  Google Scholar 

  • Giles, C. L., & Councill, I. G. (2004). Who gets acknowledged: Measuring scientific contributions through automatic acknowledgment indexing. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17599–17604.

    Article  Google Scholar 

  • Hicks, D., Wouters, P., Waltman, L., de Rijcke, S., & Rafols, I. (2015). The Leiden manifesto for research metrics. Nature, 520(7548), 429–431.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.

    Article  Google Scholar 

  • Jiang, X. R., Sun, X. P., & Zhuge, H. (2013). Graph-based algorithms for ranking researchers: Not all swans are white!. Scientometrics, 96(3), 743–759.

    Article  Google Scholar 

  • Kim, J., & Diesner, J. (2015). Distortive effects of initial-based name disambiguation on measurements of large-scale coauthorship networks. Journal of the Association for Information Science and Technology. doi:10.1002/asi.23489.

    Google Scholar 

  • Kim, J., & Kim, J. (2015). Rethinking the comparison of coauthorship credit allocation schemes. Journal of Informetrics, 9(3), 667–673.

    Article  Google Scholar 

  • Klosik, D. F., & Bornholdt, S. (2014). The citation wake of publications detects nobel laureates’ papers. PLoS One, 9(12), e113184.

    Article  Google Scholar 

  • Kreiman, G., & Maunsell, J. H. R. (2011). Nine criteria for a measure of scientific output. Frontiers in Computational Neuroscience, 5, 48.

    Article  Google Scholar 

  • Martin, T., Ball, B., Karrer, B., & Newman, M. E. J. (2013). Coauthorship and citation patterns in the physical review. Physical Review E, 88(1), 012814.

    Article  Google Scholar 

  • Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 101(suppl 1), 5200–5205.

    Article  Google Scholar 

  • Neylon, C., & Wu, S. (2009). Article-level metrics and the evolution of scientific impact. PLoS Biology, 7(11), 2459.

    Article  Google Scholar 

  • Petersen, A. M. (2015). Quantifying the impact of weak, strong, and super ties in scientific careers. Proceedings of the National Academy of Sciences of the United States of America, 112(34), E4671–E4680.

    Article  Google Scholar 

  • Petersen, A. M., Wang, F. Z., & Stanley, J. E. (2010). Methods for measuring the citations and productivity of scientists across time and discipline. Physical Review E, 81(3), 036114.

    Article  MathSciNet  Google Scholar 

  • Radicchi, F., Fortunato, S., Markines, B., & Vespignani, A. (2009). Diffusion of scientific credits and the ranking of scientists. Physical Review E, 80(5), 056103.

    Article  Google Scholar 

  • Senanayake, U., Piraveenan, M., & Zomaya, A. (2015). The pagerank-index: Going beyond citation counts in quantifying scientific impact of researchers. PloS One, 10(8), e0134794.

    Article  Google Scholar 

  • Shen, H. W., & Barabási, A. L. (2014). Collective credit allocation in science. Proceedings of the National Academy of Sciences of the United States of America, 111(34), 12325–12330.

    Article  Google Scholar 

  • Shen, H. W., Wang, D. S., Song, C. M., & Barabási, A. L. (2014). Modeling and predicting popularity dynamics via reinforced poisson processes. In Twenty-eighth AAAI conference on artificial intelligence (pp. 291–297).

  • Stallings, J., Vance, E., Yang, J. S., Vannier, M. W., Liang, J. M., Pang, L. J., et al. (2013). Determining scientific impact using a collaboration index. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9680–9685.

    Article  MathSciNet  MATH  Google Scholar 

  • Strotmann, A., & Zhao, D. Z. (2012). Author name disambiguation: What difference does it make in author-based citation analysis? Journal of the American Society for Information Science and Technology, 63(9), 1820–1833.

    Article  Google Scholar 

  • Vinkler, P. (2009). The \(\pi\)-index: A new indicator for assessing scientific impact. Journal of Information Science, 35(5), 602–612.

    Article  Google Scholar 

  • Wu, Q. (2010). The w-index: A measure to assess scientific impact by focusing on widely cited papers. Journal of the American Society for Information Science and Technology, 61(3), 609–614.

    Google Scholar 

  • Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.

    Article  Google Scholar 

  • Yao, L. Y., Wei, T., Zeng, A., Fan, Y., & Di, Z. R. (2014). Ranking scientific publications: The effect of nonlinearity. Scientific Reports, 4, 6663.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Basic Research Program of China (973 Program) under Grant Number 2014CB340401, the National High-tech R&D Program of China (863 Program) under Grant Number 2014AA015103, and the National Natural Science Foundation of China under Grant Numbers 61472400, 61425016, 61433014. H. W. Shen is also funded by Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Wei Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Shen, HW. & Cheng, XQ. Scientific credit diffusion: Researcher level or paper level?. Scientometrics 109, 827–837 (2016). https://doi.org/10.1007/s11192-016-2057-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-2057-4

Keywords

Navigation