Skip to main content
Log in

Contextual productivity assessment of authors and journals: a network scientometric approach

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Information networks, especially citation networks, have many proven and potential applications in scientometrics. Identification of productivity of authors and journals is one of the prime concern of analysts. While there are many indices to measure the productivity of author or journal, there is no known index to determine productivity with respect to a particular research context. A network scientometric approach is devised to address the identification of contextual productivity. Work-author and Work-journal affiliations modelled as 2 mode networks provide effective means to assess the productivity of authors and journals in a particular research context. In this work, weighted 2 mode networks are created for the analysis of affiliations networks such that weights reflect some citation characteristics of the works in their original citation network. A set of network indices are proposed for the assessment of contextual importance of authors and journals which are illustrated in the case study of Biotechnology for Engineering. Online databases and digital libraries can use these indices to gather insights about most productive authors and journals, along with the search results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  MATH  Google Scholar 

  • Batagelj, V. (2003). Efficient algorithms for citation network analysis. cs/0309023.

  • Batagelj, V. (2012). Social network analysis, large-scale. In A. Robert Meyers (Ed.), Computational complexity: Theory, techniques, and applications (pp. 2878–2897). New York: Springer.

    Chapter  Google Scholar 

  • Batagelj, V., & Cerinšek, M. (2013). On bibliographic networks. Scientometrics, 96(3), 845–864.

    Article  Google Scholar 

  • Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1), 113–120.

    Article  Google Scholar 

  • Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.

    Article  MathSciNet  Google Scholar 

  • Borgatti, S. P., & Halgin, D. S. (2011). Analyzing affiliation networks. In J. Scott & P. J. Carrington (Eds.), The Sage handbook of social network analysis (pp. 417–433).

  • Brughmans, T. (2013). Networks of networks: A citation network analysis of the adoption, use, and adaptation of formal network techniques in archaeology. Literary and Linguistic Computing, 28(4), 538–562.

    Article  Google Scholar 

  • Chin, W.-S., Zhuang, Y., Juan, Y.-C., Felix, W., Tung, H.-Y., Tong, Y., et al. (2014). Effective string processing and matching for author disambiguation. The Journal of Machine Learning Research, 15(1), 3037–3064.

    MathSciNet  MATH  Google Scholar 

  • de Moya-Anegón, F., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Munoz-Fernández, F. J., Herrero-Solana, V., et al. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58(14), 2167–2179.

    Article  Google Scholar 

  • De Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek (Vol. 27). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510–515.

    Article  Google Scholar 

  • Eck, N. J. V., & Waltman, L. (2010). Software survey: Vosviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.

    Article  Google Scholar 

  • Egghe, L. (2006). An improvement of the h-index: The g-index. ISSI Newsletter, 2(1), 8–9.

    MathSciNet  Google Scholar 

  • Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.

    Article  MathSciNet  Google Scholar 

  • Garfield, E. (1964). Citation indexes for science. Readings in Information Retrieval, 122(3159), 261.

    Google Scholar 

  • Garfield, E. (2009). From the science of science to scientometrics visualizing the history of science with histcite software. Journal of Informetrics, 3(3), 173–179.

    Article  Google Scholar 

  • Garfield, E., Paris, S., & Stock, W. G. (2006). Histcitetm: A software tool for informetric analysis of citation linkage. Information Wissenschaft und Praxis, 57(8), 391.

    Google Scholar 

  • Garfield, E., Sher, I. H., & Torpie, R. J. (1964). The use of citation data in writing the history of science. Technical report, The Institute for Scientific Information.

  • Hansen, D., Shneiderman, B., & Smith, M. A. (2011). Social network analysis: Measuring, mapping, and modeling collections of connections. Analyzing social media networks with NodeXL: Insights from a connected world (pp. 31–52). Burlington: Elsevier.

    Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National academy of Sciences of the United States of America, 102(46), 16569–16572.

    Article  Google Scholar 

  • Hoel, E. G., Heng, W.-L., & Honeycutt, D. (2005). High performance multimodal networks. In C. B. Medeiros, M. J. Egenhofer & E. Bertino (Eds.), Advances in spatial and temporal databases (pp. 308–327). Springer.

  • Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of dna theory. Social Networks, 11(1), 39–63.

    Article  Google Scholar 

  • Iwami, S., Mori, J., Sakata, I., & Kajikawa, Y. (2014). Detection method of emerging leading papers using time transition. Scientometrics, 101(2), 1515–1533.

    Article  Google Scholar 

  • Jo, S. J., Jeung, C.-W., Park, S., & Yoon, H. J. (2009). Who is citing whom: Citation network analysis among hrd publications from 1990 to 2007. Human Resource Development Quarterly, 20(4), 503–537.

    Article  Google Scholar 

  • Kajikawa, Y., Ohno, J., Takeda, Y., Matsushima, K., & Komiyama, H. (2007). Creating an academic landscape of sustainability science: An analysis of the citation network. Sustainability Science, 2(2), 221–231.

    Article  Google Scholar 

  • Kejžar, N., Černe, S. K., & Batagelj, V. (2010). Network analysis of works on clustering and classification from web of science. In H. Locarek-Junge & C. Weihs (Eds.), Classification as a tool for research (pp. 525–536). Springer.

  • Kosmulski, M. (2006). A new hirsch-type index saves time and works equally well as the original h-index. ISSI Newsletter, 2(3), 4–6.

    Google Scholar 

  • Lathabai, H. H., Prabhakaran, T., & Changat, M. (2014). Affiliations network analysis in scientific citations: A case study of information technology for engineering. In 2014 International conference on data science and engineering (ICDSE) (pp. 151–156). IEEE.

  • Lathabai, H. H., Prabhakaran, T., & Changat, M. (2015). Centrality and flow vergence gradient based path analysis of scientific literature: A case study of biotechnology for engineering. Physica A: Statistical Mechanics and its Applications, 429, 157–168.

    Article  Google Scholar 

  • Liu, J. S., & Lu, L. Y. Y. (2012). An integrated approach for main path analysis: Development of the hirsch index as an example. Journal of the American Society for Information Science and Technology, 63(3), 528–542.

    Article  Google Scholar 

  • Liu, J. S., Lu, L. Y. Y., Lu, W.-M., & Lin, B. J. Y. (2013). Data envelopment analysis 1978–2010: A citation-based literature survey. Omega, 41(1), 3–15.

    Article  Google Scholar 

  • Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of Washington Academy Sciences, 16(12), 317–323.

  • Park, H., & Magee, C. L. (2016). Tracing technological development trajectories: A genetic knowledge persistence-based main path approach. arXiv:1608.07371.

  • Porter, A., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.

    Article  Google Scholar 

  • Prabhakaran, T., Lathabai, H. H., & Changat, M. (2015). Detection of paradigm shifts and emerging fields using scientific network: A case study of information technology for engineering. Technological Forecasting and Social Change, 91, 124–145.

    Article  Google Scholar 

  • Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for information Science and Technology, 61(9), 1871–1887.

    Article  Google Scholar 

  • Ralph, G. (1967). A computer oriented, graph theoretic analysis of citation index structures. In B. Flood (Ed.), Three Drexel information science research studies (pp. 3–46). Philadelphia: Drexel University Press.

    Google Scholar 

  • Scardoni, G., & Laudanna, C. (2012). Centralities based analysis of complex networks. Rijeka: INTECH Open Access Publisher.

    Book  MATH  Google Scholar 

  • Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.

    Article  MathSciNet  Google Scholar 

  • Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2009). Comparative study on methods of detecting research fronts using different types of citation. Journal of the American Society for Information Science and Technology, 60(3), 571–580.

    Article  Google Scholar 

  • Shibata, N., Kajikawa, Y., Takeda, Y., Sakata, I., & Matsushima, K. (2011). Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications. Technological Forecasting and Social Change, 78(2), 274–282.

    Article  Google Scholar 

  • Small, H. (1999). Visualizing science by citation mapping. Journal of the Association for Information Science and Technology, 50(9), 799.

    Google Scholar 

  • Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiran H. Lathabai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lathabai, H.H., Prabhakaran, T. & Changat, M. Contextual productivity assessment of authors and journals: a network scientometric approach. Scientometrics 110, 711–737 (2017). https://doi.org/10.1007/s11192-016-2202-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-2202-0

Keywords

Navigation