Skip to main content
Log in

Evolution monitoring for innovation sources using patent cluster analysis

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

According to the increasing importance of advanced technologies for economy growth and the incremental complexity of research and development management, a novel methodology is proposed in this paper to monitor the evolution trace of innovation sources. This approach focuses on the knowledge-transfer among technologies using patent cluster analysis. More specifically, a citation network model, consisting of patents in “Coherent Light Generators” classification, is established with the data collected from the United States Patent and Trademark Office. In addition, dynamical topological structure is investigated to probe into the overview properties and identify key milestones for the expanding citation network from 1976 to 2014. Next, a novel framework for patent clustering is developed to find out knowledge chunks of which internal knowledge-flows are dense while cut edges are sparse. Community detection algorithms are compared with different assessment indices based on citation network and the selected solution is improved using optimization objectives of cluster analysis. Then, the dynamical structure of the detected knowledge chunks is investigated and the evolution of innovation sources, identified by k-core decomposition, is monitored to unveil the technology development trace. Finally, analysis results are discussed and related conclusions are summarized. This article improves approaches for patent cluster analysis and develops a new follow-up investigation methodology for detected knowledge chunks. It is discovered there are not only scale increases, but also the integration for knowledge chunks during the focal period. Identifying the knowledge chunks which obtain rapid growth in both cluster scale and innovation source is useful to detect technology development opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ahn, Y.-Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 446(7136), 664–667.

    Google Scholar 

  • Albert, R., & Barabasi, A.-L. (2002). Statistical mechanics of complex network. Reviews of Modern Physics, 74(1), 47–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  MATH  Google Scholar 

  • Blaj, G., Calagiulo, P., Carini, G., et al. (2015). X-ray detectors at the linac coherent light source. Journal of Synchrotron Radiation, 22(3), 577–583.

    Article  Google Scholar 

  • Blondel, V. D., Guillaume, J. L., Lambiotte, R., et al. (2008). Fast unfolding of community in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), 155–168.

    Article  Google Scholar 

  • Chang, S. (2012). Using patent analysis to establish technological position: Two different strategic approaches. Technological Forecasting and Social Change, 79(1), 3–15.

    Article  Google Scholar 

  • Chang, S., Lai, K., & Chang, S. (2009). Exploring technology diffusion and classification of business methods: Using the patent citation network. Technological Forecasting and Social Change, 76(1), 107–117.

    Article  Google Scholar 

  • Chang, P., Wu, C., & Leu, H. (2010). Using patent analyses to monitor the technological trends in an emerging field of technology: A case of carbon nanotube field emission display. Scientometrics, 82(1), 5–19.

    Article  Google Scholar 

  • Chen, D., Fu, Y., & Shang, M. (2009). A fast and efficient heuristic algorithm for detecting community structures in complex networks. Physica A, 388(13), 2741–2749.

    Article  Google Scholar 

  • Cheng, Q., Liu, Z., Huang, J., et al. (2016). Community detection in hypernetwork via Density-Ordered Tree partition. Applied Mathematics and Computation, 276(C), 384–393.

    Article  MathSciNet  Google Scholar 

  • Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 066111.

    Article  Google Scholar 

  • Comin, D. A., & Mestieri, M. (2013). Technology diffusion: Measurement, causes and consequences. Institute for New Economic Thinking (INET), 2, 565–622.

    Google Scholar 

  • Erdi, P., Makovi, K., Somogyvari, Z., et al. (2013). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95(1), 225–242.

    Article  Google Scholar 

  • Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Science, 104(1), 36–41.

    Article  Google Scholar 

  • Fortunato, S., Latora, V., & Marchiori, M. (2004). A method to find community structures based on information centrality. Physical Review E, 70(5), 148–168.

    Google Scholar 

  • Georgiadis, D. R., Mazzuchi, T. A., & Sarkani, S. (2013). Using multi criteria decision making in analysis of alternatives for selection of enabling technology. Systems Engineering, 16(3), 287–303.

    Article  Google Scholar 

  • Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Science, 99(12), 7821–7826.

    Article  MathSciNet  MATH  Google Scholar 

  • Gress, B. (2010). Properties of the USPTO patent citation network: 1963–2002. World Patent Information, 32(1), 3–21.

    Article  Google Scholar 

  • Jun, S., Park, S. S., & Jang, D. S. (2012). Technology forecasting using matrix map and patent clustering. Industrial Management & Data Systems, 112(5), 786–807.

    Article  Google Scholar 

  • Karlsson, M. (2014). Four-dimensional rotations in coherent optical communications. Journal of Lightwave Technology, 32(6), 1246–1257.

    Article  Google Scholar 

  • Kim, B., Gazzola, G., Lee, J., et al. (2014a). Inter-cluster connectivity analysis for technology opportunity discovery. Scientometrics, 98(1), 1811–1825.

    Article  Google Scholar 

  • Kim, E., Cho, Y., & Kim, W. (2014b). Dynamic patterns of technological convergence in printed electronics technologies: Patent citation network. Scientometrics, 98(2), 975–998.

    Article  Google Scholar 

  • Kirby, M. R. (2001). A methodology for technology identification, evaluation, and selection in conceptual and preliminary aircraft design. PhD Thesis, Atlanta: School of Aerospace Engineering, Georgia Institute of Technology.

  • Kitsak, M., Gallos, L. K., Havlin, S., et al. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888–893.

    Article  Google Scholar 

  • Latapy, M., & Pons, P. (2004). Computing communities in large networks using random walks. Journal of Graph Algorithms and Application, 10(2), 284–293.

    MathSciNet  MATH  Google Scholar 

  • Lee, H., Kim, C., Cho, H., et al. (2009). An ANP-based technology network for identification of core technologies: A case of telecommunication technologies. Expert Systems with Applications, 36(1), 894–908.

    Article  Google Scholar 

  • Leicht, E. A., & Newman, M. E. J. (2007). Community structure in directed networks. Physical Review E, 100(11), 2339–2340.

    Google Scholar 

  • Leskovec, J., Lang, K. J., Dasgupta, A., et al. (2008). Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1), 29–123.

    Article  MathSciNet  MATH  Google Scholar 

  • Minitti, M. P., Robinson, J. S., Coffee, R. N., et al. (2015). Optical laser systems at the linac coherent light source. Journal of Synchrotron Radiation, 22(3), 526–531.

    Article  Google Scholar 

  • Newman, M. E. J. (2004a). Detecting community structure in networks. The European Physics Journal B, 38(2), 321–330.

    Article  Google Scholar 

  • Newman, M. E. J. (2004b). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6), 066133.

    Article  Google Scholar 

  • Newman, M. E. J. (2006a). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74(3), 036104.

    Article  MathSciNet  Google Scholar 

  • Newman, M. E. J. (2006b). Modularity and community structure in networks. Proceedings of the National Academy of Science, 103(23), 8577–8582.

    Article  Google Scholar 

  • Newman, M. E. J. (2013). Spectral methods for network community detection and graph partitioning. Physical Review E, 88(4), 042822.

    Article  Google Scholar 

  • Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036106.

    Article  Google Scholar 

  • Rodriguez, A., Kim, B., Turkoz, M., et al. (2015). New multi-stage similarity measure for calculation of pairwise patent similarity in a patent citation network. Scientometrics, 103(2), 565–581.

    Article  Google Scholar 

  • Tseng, Y., Lin, C., & Lin, Y. (2007). Text mining techniques for patent analysis. Information Processing and Management, 43(5), 1216–1247.

    Article  Google Scholar 

  • Wang, X., Zhao, Y., Liu, R., et al. (2013). Knowledge-transfer analysis based on co-citation clustering. Scientometrics, 97(3), 859–869.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 409–410.

    Article  Google Scholar 

  • Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.

    Article  Google Scholar 

  • Yoon, J., & Kim, K. (2012). Detecting signals of new technological opportunities using semantic patent analysis and outlier detection. Scientometrics, 90(2), 445–461.

    Article  Google Scholar 

  • Yoon, J., Park, H., & Kim, K. (2013). Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis. Scientometrics, 94(1), 313–331.

    Article  Google Scholar 

  • You, H., Li, M., Hipel, K. W., et al. (2017). Development trend forecasting for coherent light generator technology based on patent citation network analysis. Scientometrics. doi:10.1007/s11192-017-2252-y.

    Google Scholar 

  • You, H., Li, M., Jiang, J., et al. (2014). A network modeling and structure optimization approach for technology system of systems. Journal of National University of Defense Technology, 6, 123–127.

    Google Scholar 

  • Zhou, H. (2003). Distance, dissimilarity index, and network community structure. Physical Review E, 67(6), 891–901.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees who provided thoughtful comments, and also would like to thank Prof. Keith W. Hipel at the University of Waterloo for his constructive suggestions in improving the quality of this paper. This work was supported partly by the National Science Foundation of China under Grant No. 71501182 and No. 71671186 and the Research Project of National University of Defense Technology under Grand No. JS16-03-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingfeng Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, H., Li, M., Jiang, J. et al. Evolution monitoring for innovation sources using patent cluster analysis. Scientometrics 111, 693–715 (2017). https://doi.org/10.1007/s11192-017-2318-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2318-x

Keywords

Navigation