Skip to main content
Log in

The evolutionary growth estimation model of international cooperative patent networks

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Over the past two decades, the number of international cooperative patents has grown significantly with the development of globalization. Although previous studies have almost exclusively used econometric methods, we argue that international cooperative patents change over time and that the relevant actors are dynamic, connected, and coexist to determine a country’s position in the international network of such patents. This study verified that different dimensions in the growth trajectory of the central patent international cooperative network curve form covariance structure perspectives using a latent growth curve model. Additionally, past studies have rarely examined whether technological concentration affects national technology innovation capacities; here, we integrated technological concentration with the estimation model. The results indicated that knowledge stock has a positive effect on the evolutionary growth rate of international cooperative patent network centrality. Moreover, technological concentration was found to strengthen the effect of knowledge stock on network centrality. An experimental map was produced to illustrate the interrelationships of the dimensions, which may be used as a reference by the government.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. These countries comprise: Austria, Australia, Belgium, Brazil, Canada, Switzerland, China Mainland, Czech Republic, Germany, Denmark, Spain, Finland, France, the United Kingdom, Greece, Hong Kong, Hungary, Ireland, Israel, India, Italy, Japan, Korea, Luxembourg, Malaysia, Netherlands, Norway, New Zealand, Poland, Russia, United Arab Emirates, Sweden, Singapore, Taiwan, the United States, and South Africa.

References

  • Abuhamad, A., & Shaltoni, A. M. (2013). Open innovations and international collaboration in the context of emerging economies. International Journal of Business and Management, 8(8), 12–21.

    Article  Google Scholar 

  • Al-Laham, A., Tzabbar, D., & Amburgey, T. L. (2011). The dynamics of knowledge stocks and knowledge flows: Innovation consequences of recruitment and collaboration in biotech. Industrial and Corporate Change, 20(2), 555–583.

    Article  Google Scholar 

  • Archibugi, D., & Coco, A. (2005). Measuring technological capabilities at the country level: A survey and a menu for choice. Research Policy, 34(2), 175–194.

    Article  Google Scholar 

  • Archibugi, D., & Michie, J. (1995). The globalization of technology: A new taxonomy. Cambridge Journal of Economics, 19(1), 121–140.

    Google Scholar 

  • Archibugi, D., & Pianta, M. (1992). Specialization and size of technological activities in industrial countries: The analysis of patent data. Research Policy, 21(1), 79–93.

    Article  Google Scholar 

  • Archibugi, D., & Pianta, M. (1996). Measuring technological change through patents and innovation surveys. Technovation, 16(9), 451–468.

    Article  Google Scholar 

  • Balconi, M., & Laboranti, A. (2006). University-industry interactions in applied research: The case of microelectronics. Research Policy, 35(10), 1616–1630.

    Article  Google Scholar 

  • Basilevsky, A. (1994). Statistical factor analysis and related methods: Theory and applications. London: Wiley.

    Book  MATH  Google Scholar 

  • Bass, S. D., & Kurgan, L. A. (2010). Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology. Scientometrics, 82(2), 217–241.

    Article  Google Scholar 

  • Bergek, A., & Bruzelius, M. (2010). Are patent with multiple inventors from different countries a good indicator of international R&D collaboration? The case of ABB. Research Policy, 39(10), 1321–1334.

    Article  Google Scholar 

  • Boldi, P., & Vigna, S. (2014). Axioms for centrality. Internet Mathematics, 10(3–4), 222–262.

    Article  MathSciNet  Google Scholar 

  • Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Borgatti, S. P. (2006). Identifying sets of key players in a social network. Computational and Mathematical Organization Theory, 12(1), 21–34.

    Article  MATH  Google Scholar 

  • Boschma, R., & Frenken, K. (2010). The spatial evolution of innovation networks: A proximity perspective. In R. Boschma & R. Martin (Eds.), The handbook of evolutionary economic geography (pp. 120–135). Cheltenham: Edward Elgar.

    Chapter  Google Scholar 

  • Bosworth, D. L. (1984). Foreign patent flows to and from the United Kingdom. Research Policy, 13(2), 115–124.

    Article  Google Scholar 

  • Branstetter, L. G., Fisman, R., & Foley, C. F. (2006). Do stronger intellectual property rights increase international technology transfer? Empirical evidence from US firm level panel data. Quarterly Journal of Economics, 121(1), 321–349.

    Article  Google Scholar 

  • Breschi, S., & Lissoni, F. (2009). Mobility of skilled workers and co-invention networks: an anatomy of localized knowledge flows. Journal of Economic Geography, 9(4), 439–468.

    Article  Google Scholar 

  • Breschi, S., Malerba, F., & Orsenigo, L. (2000). Technological regimes and Schumpeterian patterns of innovation. Economic Journal, 110(463), 388–410.

    Article  Google Scholar 

  • Brockhoff, K. (1992). R&D cooperation between firms: A perceived transaction cost perspective. Management Science, 38(4), 514–524.

    Article  Google Scholar 

  • Byrne, B. M., & Crombie, G. (2003). Modeling and testing change: An introduction to the latent growth curve model. Understanding Statistics, 2(3), 177–203.

    Article  Google Scholar 

  • Cantner, U., & Graf, H. (2004). Cooperation and specialization in German technology regions. Journal of Evolutionary Economics, 14(5), 543–562.

    Article  Google Scholar 

  • Cantwell, J., & Vertova, G. (2004). Historical evolution of technological diversification. Research Policy, 33(3), 511–529.

    Article  Google Scholar 

  • Chang, S. H., & Chang, H. Y. (2013). Study on national innovation capacity and international connection. Innovation: Management, Policy and Practice, 15(4), 452–462.

    Article  MathSciNet  Google Scholar 

  • Chang, P. L., & Shih, H. Y. (2005). Comparing patterns of intersectoral innovation diffusion in Taiwan and China: A network analysis. Technovation, 25(2), 155–169.

    Article  Google Scholar 

  • Chang, S. H., Wang, K. Y., Chih, W. H., & Tsai, W. H. (2012). Building customer commitment in business-to-business markets. Industrial Marketing Management, 41(6), 940–950.

    Article  Google Scholar 

  • Chen, Y. S., & Chang, K. C. (2010). The nonlinear nature of the relationships between the patent traits and corporate performance. Scientometrics, 82(1), 201–210.

    Article  MathSciNet  Google Scholar 

  • Chen, J. H., Jang, S. L., & Chang, C. H. (2013). The patterns and propensity for international co-invention: The case of China. Scientometrics, 94(2), 481–495.

    Article  Google Scholar 

  • Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.

    Article  Google Scholar 

  • Cummings, J. N., & Kiesler, S. (2007). Coordination costs and project outcomes in multi-university collaborations. Research Policy, 36(10), 1620–1634.

    Article  Google Scholar 

  • Davies, R. M. (1996). Industry-university collaborations: A necessity for the future. Journal of Dentistry, 4(1–2), 3–5.

    Article  Google Scholar 

  • Denisia, V. (2010). Foreign direct investment theories: An overview of the main FDI theories. European Journal of Interdisciplinary Studies, 3(10), 53–59.

    Google Scholar 

  • Duso, T., Pennings, E., & Seldeslachts, J. (2009). Learning dynamics in research alliances: A panel data analysis. Research Policy, 39(6), 776–789.

    Article  Google Scholar 

  • Eaton, J., & Kortum, S. (1996). Trade in ideas-patenting and productivity in the OECD. Journal of International Economics, 40(3–4), 251–278.

    Article  Google Scholar 

  • Ejermo, O., & Karlsson, C. (2006). Interregional inventor networks as studied by patent coinventorships. Research Policy, 35(3), 412–430.

    Article  Google Scholar 

  • Fleming, L., & Frenken, K. (2007). The evolution of inventor networks in the Silicon Valley and Boston regions. Advances in Complex Systems, 10(1), 53–71.

    Article  MATH  Google Scholar 

  • Furman, J. L., Porter, M. E., & Stern, S. (2002). The determinants of national innovative capacity. Research Policy, 31(6), 899–933.

    Article  Google Scholar 

  • Gao, X., Guan, J., & Rousseau, R. (2011). Mapping collaborative knowledge production in China using patent co-inventorships. Scientometrics, 88(2), 343–362.

    Article  Google Scholar 

  • Gassmann, O., & Enkel, E. (2004). Towards a theory of open innovation: Three core process archetypes. In Proceedings of the R&D management conference (RADMA). Lisbon.

  • Gerybadze, A., & Reger, G. (1999). Globalization of R&D: Recent changes in the management of innovation in transnational corporations. Research Policy, 28(2–3), 251–274.

    Article  Google Scholar 

  • Gilding, M. (2008). ‘The Tyranny of Distance’: Biotechnology networks and clusters in the antipodes. Research Policy, 37(6–7), 1132–1144.

    Article  Google Scholar 

  • Giuliani, E. (2007). The selective nature of knowledge networks in clusters: Evidence from the wine industry. Journal of Economic Geography, 7(2), 139–168.

    Article  Google Scholar 

  • Glaeser, E. L., Kallal, H. D., Scheinkman, J. A., & Shleifer, A. (1992). Growth in cities. Journal of Political Economy, 100(6), 1126–1152.

    Article  Google Scholar 

  • Goetze, C. (2010). An empirical enquiry into co-patent networks and their stars: The case of cardiac pacemaker technology. Technovation, 30(7), 436–446.

    Article  Google Scholar 

  • Griliches, Z. (1981). Market value, R-and-D, and patents. Economics Letters, 7(2), 183–187.

    Article  Google Scholar 

  • Guellec, D., & de la Potterie, B. P. (2000). Applications, grants and the value of patent. Economics Letters, 69(1), 109–114.

    Article  MATH  Google Scholar 

  • Guellec, D., & de la Potterie, B. P. (2001). The internationalisation of technology analyzed with patent data. Research Policy, 30(8), 1253–1266.

    Article  Google Scholar 

  • Hall, B. H. (2002). A note on the bias in the Herfindahl based on count data. In A. Jaffe & M. Trajtenberg (Eds.), Patents, citations, and innovations (pp. 149–156). Cambridge, MA: MIT Press.

    Google Scholar 

  • Hall, M., & Tideman, N. (1967). Measures of concentration. Journal of the American Statistical Association, 62(1), 162–168.

    Article  Google Scholar 

  • Hasan, S. (2012). Group based trajectories of network formation and dynamics. Social Networks, 34(1), 506–514.

    Article  Google Scholar 

  • Ibarra-Caton, M. (2013). Direct investment for 2009–2012: Detailed historical-cost positions and related financial and income flows. Survey of Current Business, 93(9), 200–284.

    Google Scholar 

  • Jacobs, J. (1969). The economy of cities. New York, NY: Random House.

    Google Scholar 

  • Jongsthapongpanth, A., & Bagchi-Sen, S. (2007). US-Asia interdependencies: A study of business and knowledge links. Journal of the Asia Pacific Economy, 12(2), 215–249.

    Article  Google Scholar 

  • Jungmittag, A. (2004). Innovations, technological specialisation and economic growth in the EU. International Economics and Economic Policy, 1(2–3), 247–273.

    Article  Google Scholar 

  • Kavusan, K., Noorderhaven, N. G., & Duysters, G. M. (2016). Knowledge acquisition and complementary specialization in alliances: The impact of technological overlap and alliance experience. Research Policy, 45(10), 2153–2165.

    Article  Google Scholar 

  • Kline, R. B. (2004). Principles and practice of structural equation modeling. New York, NY: Guilford.

    MATH  Google Scholar 

  • Lanjouw, J., & Schankerman, M. (2004). Patent quality and research productivity: Measuring innovation with multiple indicators. Economic Journal, 114(495), 441–465.

    Article  Google Scholar 

  • Lazonick, W. (2005). The innovative firm. In J. Fagerberg, D. Mowery, & R. R. Nelson (Eds.), The Oxford handbook of innovation (pp. 29–55). New York, NY: Oxford University Press.

    Google Scholar 

  • Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social Studies of Science, 35(5), 673–702.

    Article  Google Scholar 

  • Ma, Z., & Lee, Y. (2008). Patent application and technological collaboration in inventive activities: 1980–2005. Technovation, 28(6), 379–390.

    Article  Google Scholar 

  • Malerba, F., & Montobbio, F. (2003). Exploring factors affecting international technological specialization: The role of knowledge flows and the structure of innovative activity. Journal of Evolutionary Economics, 13(4), 411–434.

    Article  Google Scholar 

  • Malerba, F., & Orsenigo, L. (1993). Technological regimes and firm behavior industrial and corporate change. Industrial and Corporate Change, 2(1), 45–71.

    Article  Google Scholar 

  • Montobbio, F., & Sterzi, V. (2011). Inventing together: Exploring the nature of international knowledge spillovers in Latin America. Journal of Evolutionary Economics, 21(1), 53–89.

    Article  Google Scholar 

  • Nelson, R. (1993). National innovation systems: A comparative analysis. New York, NY: Oxford University Press.

    Google Scholar 

  • Niosi, J., & Bellon, B. (1994). The global interdependence on national innovation systems: Evidence, limits, and implications. Technology in Society, 16(2), 173–197.

    Article  Google Scholar 

  • Pakes, A., & Griliches, Z. (1980). Patents and R&D at the firm level: A first report. Economics Letters, 5(4), 377–381.

    Article  Google Scholar 

  • Peneder, M. (2010). Technological regimes and the variety of innovation behavior: Creating integrated taxonomies of firms and sectors. Research Policy, 39(3), 323–334.

    Article  Google Scholar 

  • Pisano, G. P. (1990). The R&D boundaries of the firm: An empirical analysis. Administrative Science Quarterly, 35(1), 153–176.

    Article  Google Scholar 

  • Podolny, J. M. (2005). Status signals: A sociological study of market competition. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Prato, G. D., & Nepelski, D. (2013). A framework for assessing innovation collaboration partners and its application to BRICs. International Journal of Technology Management, 62(2–4), 102–127.

    Article  Google Scholar 

  • Rijnsoever, F., Hessels, L., & Vandeberg, R. (2008). A resource-based view on the interactions of university researchers. Research Policy, 37(8), 1255–1266.

    Article  Google Scholar 

  • Romer, P. (1990). Endogenous technological change. Journal of Political Economy, 98(5), 71–102.

    Article  Google Scholar 

  • Schildt, H., Keil, T., & Maula, M. (2012). The temporal effects of relative and firm-levelabsorptive capacity on interorganizational learning. Strategic Management Journal, 33(10), 1154–1173.

    Article  Google Scholar 

  • Schrader, S. (1991). Informal technology transfer between firms: Cooperation through informal trading. Research Policy, 20(2), 153–170.

    Article  Google Scholar 

  • Schubert, T. (2011). Assessing the value of patent portfolios: An international country comparison. Scientometrics, 88(3), 787–804.

    Article  Google Scholar 

  • Shan, W., Walker, G., & Koput, B. (1994). Interfirm cooperation and startup innovation in the biotechnology industry. Strategic Management Journal, 15(5), 387–394.

    Article  Google Scholar 

  • Sherry, E. F., & Teece, D. J. (2004). Royalties, evolving patent rights, and the value of innovation. Research Policy, 33(2), 179–191.

    Article  Google Scholar 

  • Stone, E. F., & Hollenbeck, J. R. (1989). Clarifying some controversial issues surrounding statistical procedures for detecting moderator variables: Empirical evidence and related matters. Journal of Applied Psychology, 40(1), 75–88.

    Google Scholar 

  • Taylor, M. Z. (2007). Political decentralization and technological innovation: Testing the innovative advantages of decentralized states. Review of Policy Research, 24(3), 231–257.

    Article  Google Scholar 

  • Taylor, M. Z. (2009). International linkages and national innovation rates: An exploratory probe. Review of Policy Research, 26(1–2), 127–149.

    Article  Google Scholar 

  • Ter Wal, A. L. J. (2014). The dynamics of the inventor network in German biotechnology: Geographic proximity versus triadic closure. Journal of Economic Geography, 14(3), 589–620.

    Article  Google Scholar 

  • Ter Wal, L. J., & Boschma, R. A. (2009). Applying social network analysis in Economic geography: Framing some key analytic issues. Annals of Regional Science, 43(3), 739–756.

    Article  Google Scholar 

  • Tseng, C. Y. (2009). Technological innovation and knowledge network in Asia: Evidence from comparison of information and communication technologies. Technological Forecasting and Social Change, 6(5), 654–663.

    Article  Google Scholar 

  • Watanabe, C., Akaike, S., & Shin, J. H. (2010). Adaptive efficiency of Japan’s national innovation system toward a service oriented economy. Journal of Services Research, 10(1), 7–50.

    Google Scholar 

  • Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of change. Psychological Bulletin, 116(2), 363–381.

    Article  Google Scholar 

  • Xianhai, H., Gaoju, Y., & Jing, L. U. (2011). Study of China’s international specialization status in advanced technology industry: A case study of Zhejiang Pinghu opto-mechatronics industry cluster. Journal of International Commerce and Economics, 3(1), 55–79.

    Google Scholar 

  • Xuefeng, W., Jie, R., & Youguo, W. (2012). Co-inventor analysis on China’s international technology collaboration in US patent activities: 1976–2010. Procedia Engineering, 37, 314–322.

    Article  Google Scholar 

  • Zucker, L. G., Darby, M. R., Furner, J., Liu, R. C., & Ma, H. (2007). Minerva unbound: Knowledge stocks, knowledge flows and new knowledge production. Research Policy, 36(6), 850–863.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Ministry of Science and Technology of the Republic of China (Taiwan) (Grant No. MOST 105-2410-H-492-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hao Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, SH. The evolutionary growth estimation model of international cooperative patent networks. Scientometrics 112, 711–729 (2017). https://doi.org/10.1007/s11192-017-2378-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2378-y

Keywords

Navigation