Skip to main content
Log in

Academic rising star prediction via scholar’s evaluation model and machine learning techniques

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Predicting future academic rising stars provides a useful reference for research communities, such as offering decision support to recruit young researchers in research institutes. Academic rising stars prediction is considered to be a classification or regression task in the field of machine learning. Traditional methods of building label information for this task are only based on the increment of citation count, which cannot adequately reflect the evolution of a scholar’s academic influence. In this paper, we first propose a non-iterative hierarchical weighted evaluation model based on the quality of citing papers and the influence of co-authors. Second, we label each young scholar by the increment of the impact score from our evaluation model in the classification task, aiming at better describing the change of a scholar’s impact from more angles. Finally, different groups of features that can determine if a scholar will be a rising star are extracted, and various classification models are utilized to fit the classification relationships. The experimental results on the ArnetMiner dataset verify the feasibility of the prediction task based on our label construction method. We also find that the venue features are the best indicators for rising stars prediction in our experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Castillo, C., Donato, D., & Gionis, A. (2007). Estimating number of citations using author reputation. In International conference on string processing and information retrieval (pp. 107–117).

  • Chen, W., Niu, Z., Zhao, X., & Li, Y. (2014). A hybrid recommendation algorithm adapted in e-learning environments. World Wide Web, 17(2), 271–284.

    Article  Google Scholar 

  • Daud, A., Abbasi, R., & Muhammad, F. (2013). Finding rising stars in social networks. In International conference on database systems for advanced applications, (pp. 13–24). Berlin: Springer.

  • Daud, A., Ahmad, M., Malik, M. S., & Che, D. (2015). Using machine learning techniques for rising star prediction in co-author network. Scientometrics, 102(2), 1687–1711.

    Article  Google Scholar 

  • Ding, Y. (2011). Applying weighted pagerank to author citation networks. Journal of the Association for Information Science & Technology, 62(2), 236245.

    Google Scholar 

  • Egghe, L. (2006). Theory and practise of the g -index. Scientometrics, 69(1), 131–152.

    Article  MathSciNet  Google Scholar 

  • Freyne, J., Coyle, L., Smyth, B., & Cunningham, P. (2010). Relative status of journal and conference publications in computer science. Communications of the ACM, 53(11), 124–132.

    Article  Google Scholar 

  • Garfield, E. (2006). The history and meaning of the journal impact factor. JAMA, 295(1), 90–93.

    Article  Google Scholar 

  • Gehrke, J., Ginsparg, P., & Kleinberg, J. (2003). Overview of the 2003 kdd cup. ACM SIGKDD Explorations Newsletter, 5(2), 149–151.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.

    Article  MATH  Google Scholar 

  • Hu, X., Rousseau, R., & Chen, J. (2010). In those fields where multiple authorship is the rule, the h-index should be supplemented by role-based h-indices. Journal of Information Science, 36(1), 73–85.

    Article  Google Scholar 

  • Jin, B., Liang, L., Rousseau, R., & Egghe, L. (2007). The r-and ar-indices: Complementing the h-index. Chinese Science Bulletin, 52(6), 855–863.

    Article  Google Scholar 

  • Li, XL., Foo, CS., Tew, KL., & Ng, SK. (2009). Searching for rising stars in bibliography networks. In International conference on database systems for advanced applications (pp. 288–292).

  • Li, L., Wang, X., Zhang, Q., Lei, P., Ma, M., & Chen, X. (2014). A quick and effective method for ranking authors in academic social network. Berlin Heidelberg: Springer.

    Book  Google Scholar 

  • Liao, C. H., & Yen, H. R. (2012). Quantifying the degree of research collaboration: A comparative study of collaborative measures. Journal of Informetrics, 6(1), 27–33.

    Article  Google Scholar 

  • Liu, X., Bollen, J., Nelson, M. L., & Sompel, H. V. D. (2005). Co-authorship networks in the digital library research community. Information Processing and Management, 41(6), 1462–1480.

    Article  Google Scholar 

  • Ning, Z., Liu, Y., Kong, X. (2017). Social gene a new method to find rising stars. In International symposium on networks, computers and communications (pp. 1–6).

  • Ning, Z., Liu, Y., Zhang, J., & Wang, X. (2017b). Rising star forecasting based on social network analysis. IEEE Access, 5, 24229–24238.

    Article  Google Scholar 

  • Panagopoulos, G., Tsatsaronis, G., & Varlamis, I. (2017). Detecting rising stars in dynamic collaborative networks. Journal of Informetrics, 11(1), 198–222.

    Article  Google Scholar 

  • Schreiber, M. (2008). A modification of the h -index: The h m -index accounts for multi-authored manuscripts. Journal of Informetrics, 2(3), 211–216.

    Article  Google Scholar 

  • Sekercioglu, C. H. (2008). Quantifying coauthor contributions. Science, 322(5900), 371.

    Article  Google Scholar 

  • Shen, H. W., Wang, D., Song, C., & Barabási, A. L. (2014). Modeling and predicting popularity dynamics via reinforced poisson processes. AAAI, 14, 291–297.

    Google Scholar 

  • Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). Arnetminer:extraction and mining of academic social networks. In ACM SIGKDD international conference on knowledge discovery and data mining (pp. 990–998).

  • Tarus, J. K., Niu, Z., & Yousif, A. (2017). A hybrid knowledge-based recommender system for e-learning based on ontology and sequential pattern mining. Future Generation Computer Systems, 72, 37–48.

    Article  Google Scholar 

  • Tarus, J. K., Niu, Z., & Mustafa, G. (2018). Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning. Artificial Intelligence Review, 50(1), 21–48.

    Article  Google Scholar 

  • Wan, S., & Niu, Z. (2016). A learner oriented learning recommendation approach based on mixed concept mapping and immune algorithm. Knowledge-Based Systems, 103, 28–40.

    Article  Google Scholar 

  • Wang, D., Song, C., & Barabsi, A. L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.

    Article  Google Scholar 

  • Wildgaard, L., Schneider, J. W., & Larsen, B. (2014). A review of the characteristics of 108 author-level bibliometric indicators. Scientometrics, 101(1), 125–158.

    Article  Google Scholar 

  • Yan, E., & Ding, Y. (2010). Applying centrality measures to impact analysis: A coauthorship network analysis. Journal of the Association for Information Science & Technology, 60(10), 2107–2118.

    MathSciNet  Google Scholar 

  • Yan, E., & Ding, Y. (2011). Discovering author impact: A pagerank perspective. Information Processing and Management, 47(1), 125–134.

    Article  Google Scholar 

  • Yan, R., Huang, C., Tang, J., Zhang, Y., & Li, X. (2012). To better stand on the shoulder of giants. In Acm/ieee-cs joint conference on digital libraries (pp. 51–60).

  • Yan, R., Tang, J., Liu, X., Shan, D., & Li, X. (2011). Citation count prediction: Learning to estimate future citations for literature. In Proceedings of the 20th ACM international conference on information and knowledge management (pp. 1247–1252). ACM.

  • Ye, F. Y., & Leydesdorff, L. (2013). The academic trace of the performance matrix: A mathematical synthesis of the h-index and the integrated impact indicator (i3). Journal of the American Society for Information Science and Technology, 65(4), 742–750.

    Google Scholar 

  • Yousif, A., Niu, Z., Chambua, J., & Khan, Z. Y. (2019). Multi-task learning model based on recurrent convolutional neural networks for citation sentiment and purpose classification. Neurocomputing, 335, 195–205.

    Article  Google Scholar 

  • Yu, T., Yu, G., Li, P. Y., & Wang, L. (2014). Citation impact prediction for scientific papers using stepwise regression analysis. Scientometrics, 101(2), 1233–1252.

    Article  Google Scholar 

  • Zhang, C., Liu, C., Yu, L., Zhang, ZK., & Zhou, T. (2017). Identifying the academic rising stars via pairwise citation increment ranking. In Asia-Pacific Web (pp. 475–483).

  • Zhang, J., Xia, F., Wang, W., Bai, X., Yu, S., Bekele, TM., & Peng, Z. (2016). Cocarank: A collaboration caliber-based method for finding academic rising stars. In International conference companion on world wide web (pp. 395–400).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Niu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Zhu, Y., Lin, Q. et al. Academic rising star prediction via scholar’s evaluation model and machine learning techniques. Scientometrics 120, 461–476 (2019). https://doi.org/10.1007/s11192-019-03131-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03131-x

Keywords

Navigation