Skip to main content
Log in

Structural decomposition of technological domain using patent co-classification and classification hierarchy

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This paper proposes a new method for decomposing a technological domain (TD). Specifically, the method identifies sub-TDs at the different levels of technological hierarchy within the TD based on the characteristics of patent co-classification and classification hierarchy. We defined the smallest class, named Minimum Overlapped Class (MOC), constructed by overlaps of sub-group IPC(s) and sub-class UPC(s), and sub-TD is basically identified as a set of the MOCs. In order to cluster the MOCs, technological distances among MOCs are calculated based on patent co-classification and hierarchical structure of patent classification systems. Technologically similar MOCs are grouped by using a hierarchical clustering and the identified clusters at the different level of hierarchy show the hierarchical structure of a TD. Detailed technological content for each sub-TD is represented by extracting representative keywords through a text-mining technique. The method is empirically tested by the solar photovoltaic technology and the results show that the identified sub-TDs are reasonably acceptable by qualitative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antonelli, C. (2011). Handbook on the economic complexity of technological change. Cheltenham: Edward Elgar Publishing.

    Book  Google Scholar 

  • Basnet, S., & Magee, C. L. (2017). Artifact interactions retard technological improvement: An empirical study. PLoS ONE, 12(8), e0179596.

    Article  Google Scholar 

  • Benson, C. L. (2014). Cross-domain comparison of quantitative technology improvement using patent derived characteristics. Cambridge: Massachusetts Institute of Technology.

    Google Scholar 

  • Benson, C. L., & Magee, C. L. (2013). A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field. Scientometrics, 96(1), 69–82.

    Article  Google Scholar 

  • Benson, C. L., & Magee, C. L. (2015a). Quantitative determination of technological improvement from patent data. PLoS ONE, 10(4), e0121635.

    Article  Google Scholar 

  • Benson, C. L., & Magee, C. L. (2015b). Technology structural implications from the extension of a patent search method. Scientometrics, 102(3), 1965–1985.

    Article  Google Scholar 

  • Benson, C. L., & Magee, C. L. (2016). Using enhanced patent data for future-oriented. In T. U. Daim, D. Chiavetta, A. L. Porter, & O. Saritas (Eds.), Anticipating future innovation pathways through large data analysis (pp. 119–131). Berlin: Springer.

    Chapter  Google Scholar 

  • Carley, S. F., Newman, N. C., Porter, A. L., & Garner, J. G. (2018). An indicator of technical emergence. Scientometrics, 115(1), 35–49.

    Article  Google Scholar 

  • Choi, S., Noh, M. S., Yoon, J., Park, H., & Seo, W. (2018). Analyzing technological spillover effects between technology classes: The case of Korea Technology Finance Corporation. IEEE Access, 6, 3573–3584.

    Article  Google Scholar 

  • EPRI. (2009). Solar Photovoltaics: Status, Costs, and Trends (Vol. 1015804). Palo Alto, CA: EPRI.

    Google Scholar 

  • Evenson, R., & Puttnam, J. (1988). The Yale-Canada patent flow concordance. D, Yale University.

  • Fleming, L. (2001). Recombinant uncertainty in technological search. Management Science, 47(1), 117–132.

    Article  Google Scholar 

  • Fleming, L., & Sorenson, O. (2001). Technology as a complex adaptive system: Evidence from patent data. Research Policy, 30(7), 1019–1039.

    Article  Google Scholar 

  • Fu, K., Murphy, J., Yang, M., Otto, K., Jensen, D., & Wood, K. (2015). Design-by-analogy: Experimental evaluation of a functional analogy search methodology for concept generation improvement. Research in Engineering Design, 26(1), 77–95.

    Article  Google Scholar 

  • Guan, J., & Liu, N. (2016). Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Research Policy, 45(1), 97–112.

    Article  Google Scholar 

  • Jaffe, A. B., & Trajtenberg, M. (2002). Patents, citations, and innovations: A window on the knowledge economy. Cambridge: MIT press.

    Google Scholar 

  • Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3), 577–598.

    Article  Google Scholar 

  • Lybbert, T. J., & Zolas, N. J. (2014). Getting patents and economic data to speak to each other: An ‘algorithmic links with probabilities’ approach for joint analyses of patenting and economic activity. Research Policy, 43(3), 530–542.

    Article  Google Scholar 

  • Magee, C., Basnet, S., Funk, J., & Benson, C. (2016). Quantitative empirical trends in technical performance. Technological Forecasting and Social Change, 104, 237–246.

    Article  Google Scholar 

  • Martinelli, A. (2012). An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry. Research Policy, 41(2), 414–429.

    Article  Google Scholar 

  • Mina, A., Ramlogan, R., Tampubolon, G., & Metcalfe, J. S. (2007). Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge. Research Policy, 36(5), 789–806.

    Article  Google Scholar 

  • Moehrle, M. G., Walter, L., Geritz, A., & Müller, S. (2005). Patent-based inventor profiles as a basis for human resource decisions in research and development. R&d Management, 35(5), 513–524.

    Article  Google Scholar 

  • Moeller, A., & Moehrle, M. G. (2015). Completing keyword patent search with semantic patent search: Introducing a semiautomatic iterative method for patent near search based on semantic similarities. Scientometrics, 102(1), 77–96.

    Article  Google Scholar 

  • Murphy, J., Fu, K., Otto, K., Yang, M., Jensen, D., & Wood, K. (2014). Function based design-by-analogy: A functional vector approach to analogical search. Journal of Mechanical Design, 136(10), 101102.

    Article  Google Scholar 

  • Park, H., & Magee, C. L. (2017). Tracing technological development trajectories: A genetic knowledge persistence-based main path approach. PLoS ONE, 12(1), e0170895.

    Article  Google Scholar 

  • Park, H., Ree, J. J., & Kim, K. (2013a). Identification of promising patents for technology transfers using TRIZ evolution trends. Expert Systems with Applications, 40(2), 736–743.

    Article  Google Scholar 

  • Park, H., Yoon, J., & Kim, K. (2013b). Identification and evaluation of corporations for merger and acquisition strategies using patent information and text mining. Scientometrics, 97(3), 883–909.

    Article  Google Scholar 

  • Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic keyword extraction from individual documents (pp. 1–20). Text Mining: Applications and Theory.

    Google Scholar 

  • Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613–620.

    Article  Google Scholar 

  • Schmoch, U., Laville, F., Patel, P., & Frietsch, R. (2003). Linking technology areas to industrial sectors. Final Report to the European Commission, DG Research, 1, 100.

    Google Scholar 

  • Strumsky, D., & Lobo, J. (2015). Identifying the sources of technological novelty in the process of invention. Research Policy, 44(8), 1445–1461.

    Article  Google Scholar 

  • Trajtenberg, M. (1987). Patents, citations and innovations: Tracing the links. Cambridge, MA: National Bureau of Economic Research Cambridge.

    Book  Google Scholar 

  • Verhoeven, D., Bakker, J., & Veugelers, R. (2016). Measuring technological novelty with patent-based indicators. Research Policy, 45(3), 707–723.

    Article  Google Scholar 

  • Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems, 10(01), 93–115.

    Article  Google Scholar 

  • Verspagen, B., Morgastel, T. V., & Slabbers, M. (1994). MERIT concordance table: IPC-ISIC (rev. 2). Maastricht: MERIT Research Memorandum 2/94-004.

  • Von Wartburg, I., Teichert, T., & Rost, K. (2005). Inventive progress measured by multi-stage patent citation analysis. Research Policy, 34(10), 1591–1607.

    Article  Google Scholar 

  • Walter, L., Radauer, A., & Moehrle, M. G. (2017). The beauty of brimstone butterfly: Novelty of patents identified by near environment analysis based on text mining. Scientometrics, 111(1), 103–115.

    Article  Google Scholar 

  • Wang, X., Ma, P., Huang, Y., Guo, J., Zhu, D., Porter, A. L., et al. (2017). Combining SAO semantic analysis and morphology analysis to identify technology opportunities. Scientometrics, 111(1), 3–24.

    Article  Google Scholar 

  • Weitzman, M. L. (1998). Recombinant growth. The Quarterly Journal of Economics, 113(2), 331–360.

    Article  Google Scholar 

  • Wu, Z., & Palmer, M. (1994). Verbs semantics and lexical selection. In Proceedings of the 32nd annual meeting on Association for Computational Linguistics (pp. 133–138). Association for Computational Linguistics.

  • Yan, Y., & Guan, J. (2018). How multiple networks help in creating knowledge: Evidence from alternative energy patents. Scientometrics, 115(1), 1–27.

    Article  MathSciNet  Google Scholar 

  • Yoon, J., & Kim, K. (2011). Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks. Scientometrics, 88(1), 213–228.

    Article  Google Scholar 

  • Youn, H., Strumsky, D., Bettencourt, L. M., & Lobo, J. (2015). Invention as a combinatorial process: Evidence from US patents. Journal of the Royal Society, Interface, 12(106), 20150272.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2017R1A2B4012431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunseok Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mun, C., Yoon, S. & Park, H. Structural decomposition of technological domain using patent co-classification and classification hierarchy. Scientometrics 121, 633–652 (2019). https://doi.org/10.1007/s11192-019-03223-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03223-8

Keywords

Navigation