Skip to main content
Log in

A framework towards bias-free contextual productivity assessment

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Productivity assessment of various actors is one of the major concerns of Scientometrics and is vital for many applications that include policymaking. Popular productivity indices are not suitable for the determination of productivity of actors within a research context. A framework for the generation of metrics for contextual productivity assessment based on network approach has been recently proposed. However, that framework used full counting or full credit allocation, which incurs inflationary and equalizing bias. Schemes such as fractional and harmonic counting could reduce inflationary bias and harmonic counting has a repute of minimizing equalizing bias. As the existing framework for contextual productivity assessment is prone to inflationary and equalizing bias, empowering it with the provision to determine the right credit allocation scheme might take us closer to the achievement of a bias-free framework. In this work, a method to quantify the biases and to decide the right credit allocation scheme is introduced and using this we revamp the existing framework. As a case study, the productivity of inventors in the field ‘Wireless Power Transmission’ is determined. Implications from the real-world case study signify the effectiveness of the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albert, M. B., Avery, D., Narin, F., & McAllister, P. (1991). Direct validation of citation counts as indicators of industrially important patents. Research Policy, 20(3), 251–259.

    Article  Google Scholar 

  • Batagelj, V. (2012). Social network analysis, large-scale. In A. Robert Meyers (Ed.), Computational complexity: Theory, techniques, and applications (pp. 2878–2897). New York: Springer.

    Chapter  Google Scholar 

  • Batagelj, V., & Cerinšek, M. (2013). On bibliographic networks. Scientometrics, 96(3), 845–864.

    Article  Google Scholar 

  • Berker, Y. (2018). Golden-ratio as a substitute to geometric and harmonic counting to determine multi-author publication credit. Scientometrics, 114(3), 839–857.

    Article  Google Scholar 

  • Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29(4), 555–564.

    Article  Google Scholar 

  • Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.

    Article  MathSciNet  Google Scholar 

  • De Nooy, W., Mrvar, A., & Batagelj, V. (2018). Exploratory social network analysis with Pajek. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152.

    Article  MathSciNet  Google Scholar 

  • Egghe, L., Rousseau, R., & Van Hooydonk, G. (2000). Methods for accrediting publications to authors or countries: Consequences for evaluation studies. Journal of the American Society for Information Science, 51(2), 145–157.

    Article  Google Scholar 

  • Ernst, H., Leptien, C., & Vitt, J. (2000). Inventors are not alike: The distribution of patenting output among industrial R&D personnel. IEEE Transactions on Engineering Management, 47(2), 184–199.

    Article  Google Scholar 

  • Garfield, E. (1955). Citation indexes for science: A new dimension in documentation through association of ideas. Science, 122(3159), 108–111.

    Article  Google Scholar 

  • Garfield, E. (1957). Breaking the subject index barrier—A citation index for chemical patents. Journal of the Patent Office Society, 39, 583.

    Google Scholar 

  • Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178(4060), 471–479.

    Article  Google Scholar 

  • Guan, J. C., & Gao, X. (2009). Exploring the h-index at patent level. Journal of the American Society for Information Science and Technology, 60(1), 35–40.

    Article  Google Scholar 

  • Hagen, N. (2009). Harmonic publication and citation counting: Sharing authorship credit equitably-not equally, geometrically or arithmetically. Scientometrics, 84(3), 785–793.

    Article  Google Scholar 

  • Hagen, N. T. (2008). Harmonic allocation of authorship credit: Source-level correction of bibliometric bias assures accurate publication and citation analysis. PLoS One, 3(12), e4021.

    Article  Google Scholar 

  • Hagen, N. T. (2013). Harmonic coauthor credit: A parsimonious quantification of the byline hierarchy. Journal of Informetrics, 7(4), 784–791.

    Article  Google Scholar 

  • Hansen, D., Shneiderman, B., & Smith, M. A. (2010). Analyzing social media networks with NodeXL: Insights from a connected world. Los Altos: Morgan Kaufmann.

    Google Scholar 

  • Harhoff, D., Narin, F., Scherer, F. M., & Vopel, K. (1999). Citation frequency and the value of patented inventions. Review of Economics and Statistics, 81(3), 511–515.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.

    Article  Google Scholar 

  • Hodge, S. E., Greenberg, D. A., & Challice, C. (1981). Publication credit. Science, 213, 950.

    Google Scholar 

  • Hoel, E. G., Heng, W.-L., & Honeycutt, D. (2005). High performance multimodal networks. In International symposium on spatial and temporal databases (pp. 308–327). Springer.

  • Kim, J., & Diesner, J. (2014). A network-based approach to coauthorship credit allocation. Scientometrics, 101(1), 587–602.

    Article  Google Scholar 

  • Kosmulski, M. (2006). A new Hirsch-type index saves time and works equally well as the original h-index. ISSI Newsletter, 2(3), 4–6.

    Google Scholar 

  • Kuan, C.-H., Huang, M.-H., & Chen, D.-Z. (2011). Ranking patent assignee performance by h-index and shape descriptors. Journal of Informetrics, 5(2), 303–312.

    Article  Google Scholar 

  • Lathabai, H. H., Prabhakaran, T., & Changat, M. (2014). Affiliations network analysis in scientific citations: A case study of information technology for engineering. In 2014 International conference on data science & engineering (ICDSE) (pp. 151–156). IEEE.

  • Lathabai, H. H., Prabhakaran, T., & Changat, M. (2017). Contextual productivity assessment of authors and journals: A network scientometric approach. Scientometrics, 110(2), 711–737.

    Article  Google Scholar 

  • Levine, L. (1986). Prolific inventors—A bibliometric analysis. Scientometrics, 10(1–2), 35–42.

    Article  Google Scholar 

  • Lindsey, D. (1980). Production and citation measures in the sociology of science: The problem of multiple authorship. Social Studies of Science, 10(2), 145–162.

    Article  Google Scholar 

  • Liu, X. Z., & Fang, H. (2012a). Fairly sharing the credit of multi-authored papers and its application in the modification of h-index and g-index. Scientometrics, 91(1), 37–49.

    Article  Google Scholar 

  • Liu, X. Z., & Fang, H. (2012b). Modifying h-index by allocating credit of multi-authored papers whose author names rank based on contribution. Journal of Informetrics, 6(4), 557–565.

    Article  Google Scholar 

  • Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–323.

    Google Scholar 

  • Manohar, M., Lathabai, H., George, S., & Prabhakaran, T. (2018). Wire-free electricity: Insights from a techno-futuristic exploration. Utilities Policy, 53, 3–14.

    Article  Google Scholar 

  • Narin, F. (1994). Patent bibliometrics. Scientometrics, 30(1), 147–155.

    Article  Google Scholar 

  • Narin, F., & Breitzman, A. (1995). Inventive productivity. Research Policy, 24(4), 507–519.

    Article  Google Scholar 

  • Newman, M. E. J. (2008). Mathematics of Networks. In S. N. Durlauf & L. E. Blume (Eds.), The New Palgrave Dictionary of Economics (pp. 4059–4064). London: Palgrave Macmillan.

    Google Scholar 

  • Osório, A. (2018). On the impossibility of a perfect counting method to allocate the credits of multi-authored publications. Scientometrics, 116(3), 2161–2173.

    Article  Google Scholar 

  • Prabhakaran, T., Lathabai, H. H., & Changat, M. (2015). Detection of paradigm shifts and emerging fields using scientific network: A case study of information technology for engineering. Technological Forecasting and Social Change, 91, 124–145.

    Article  Google Scholar 

  • Price, D. (1981). Multiple authorship. Science, 212(4498), 986–986.

    Article  Google Scholar 

  • Tesla, N. (1908). The future of the wireless art. In W. W. Massie & C. R. Underhill (Eds.), Wireless Telegraphy & Telephony (pp. 67–71). New York: D. Van Nostrand.

  • Tesla, N. (1914). Apparatus for transmitting electrical energy. US Patent 1,119,732.

  • Tesla, N. (1927). World system of wireless transmission of energy. Telegraph and Telephone Age, 20, 457–460.

    Google Scholar 

  • Trajtenberg, M. (1990). A penny for your quotes: Patent citations and the value of innovations. The Rand Journal of Economics, 21, 172–187.

    Article  Google Scholar 

  • USPTO-OPET (published on May 31, 2019). Retrieved July 19, 2019, from https://www.uspto.gov/patents-application-process/petitions/timeline/correction-inventorship-petitions.

  • Van Hooydonk, G. (1997). Fractional counting of multiauthored publications: Consequences for the impact of authors. Journal of the American Society for Information Science, 48(10), 944–945.

    Article  Google Scholar 

Download references

Acknowledgements

This work used the facility provided by ‘Scientometric lab’ (Order No. Pl.A1/Annual plan 16-17/Imp.plan/16 dated. 29/11/2016), Department of Futures Studies, University of Kerala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thara Prabhakaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, S., Lathabai, H.H., Prabhakaran, T. et al. A framework towards bias-free contextual productivity assessment. Scientometrics 122, 127–157 (2020). https://doi.org/10.1007/s11192-019-03286-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03286-7

Keywords

Navigation