Skip to main content
Log in

Research on the formation mechanism of big data technology cooperation networks: empirical evidence from China

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The purpose of the present paper is to investigate the formation mechanism of big data technology cooperation networks by considering the combined effect of three key factors, i.e., the individual characteristics, relationship characteristics, and cooperation characteristics of research and development (R&D) entities. The utilized research data come from Chinese big data technology cooperation patents granted during the years 2009–2018. In this paper, an exponential random graph model is applied to study the impact of different indicators on a big data technology cooperation network. The results show that R&D capability and structural holes in the individual characteristics of R&D entities have negative impacts on the formation of big data technology cooperation networks. In contrast, R&D entities with a high degree centrality are beneficial to the development of big data technology cooperation networks. Regarding relationship characteristics, a trend of geographical homogeneity is obvious in the formation process of the examined big data technology cooperation network, while the effect of organisational homogeneity is nonsignificant. In terms of cooperation characteristics, the network tends to facilitate convergent cooperation and transitive cooperation rather than intermediary cooperation. The present results provide a scientific reference for entities working to build effective cooperation relationships and promote the sustainable development of big data technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal, A., Kapur, D., & McHale, J. (2008). How do spatial and social proximity influence knowledge flows? Evidence from patent data. Journal of Urban Economics, 64(2), 258–269.

    Google Scholar 

  • Ahuja, G. (2000). The duality of collaboration: Inducements and opportunities in the formation of interfirm linkages. Strategic Management Journal, 21(3), 317–343.

    Google Scholar 

  • Bai, X., Wu, J., Liu, Y., & Xu, Y. (2020). Research on the impact of global innovation network on 3D printing industry performance. Scientometrics, 124(2), 1015–1051. https://doi.org/10.1007/s11192-020-03534-1

    Article  Google Scholar 

  • Balland, P.-A., Belso-Martínez, J. A., & Morrison, A. (2016). The dynamics of technical and business knowledge networks in industrial clusters: Embeddedness, status, or proximity? Economic Geography, 92(1), 35–60.

    Google Scholar 

  • Baum, J. A., Rowley, T. J., & Shipilov, A. V. (2004). Dancing with strangers: Aspiration performance and the search for under-writing syndicate partners. Academy of Management Proceedings., 2004, A1–A6.

    Google Scholar 

  • Bengtsson, M., Raza-Ullah, T., & Vanyushyn, V. (2016). The coopetition paradox and tension: The moderating role of coopetition capability. Industrial Marketing Management, 53, 19–30. https://doi.org/10.1016/j.indmarman.2015.11.008

    Article  Google Scholar 

  • Bliss, C. A., Frank, M. R., Danforth, C. M., & Dodds, P. S. (2014). An evolutionary algorithm approach to link prediction in dynamic social networks. Journal of Computational Science, 5(5), 750–764. https://doi.org/10.1016/j.jocs.2014.01.003

    Article  MathSciNet  Google Scholar 

  • Boschma, R. A. (2005). Proximity and innovation: A critical assessment. Regional Studies, 39(1), 61–74.

    Google Scholar 

  • Brennecke, J., & Rank, O. (2017). The firm’s knowledge network and the transfer of advice among corporate inventors-A multilevel network study. Research Policy, 46(4), 768–783. https://doi.org/10.1016/j.respol.2017.02.002

    Article  Google Scholar 

  • Brughmans, T., Keay, S., & Earl, G. (2014). Introducing exponential random graph models for visibility networks. Journal of Archaeological Science, 49, 442–454. https://doi.org/10.1016/j.jas.2014.05.027

    Article  Google Scholar 

  • Burt, R. S. (1995). Structural holes : The social structure of competition. Harvard University Press.

    Google Scholar 

  • Burt, R. S. (2002). Bridge decay. Social Networks, 24, 333–363.

    Google Scholar 

  • Burt, R. S. (2004). Structural holes and Good ideas. American Journal of Sociology, 110(2), 349–399.

    Google Scholar 

  • Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. Society for Information Management and The Management Information Systems Research Center, 36, 1165.

    Google Scholar 

  • Liu, C.-H., Chiu, S.-C., & Chiu, C.-L. (2010). Intranetwork relationships, creativity, knowledge diversification, and network position. Social Behavior and Personality: An International Journal, 38(9), 1173–1190.

    Google Scholar 

  • Choe, H., Lee, D. H., Seo, I. W., & Kim, H. D. (2013). Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field (Review). Renewable & Sustainable Energy Reviews, 26, 492–505. https://doi.org/10.1016/j.rser.2013.05.037

    Article  Google Scholar 

  • Cimenler, O., Reeves, K. A., & Skvoretz, J. (2015). An evaluation of collaborative research in a college of engineering. Journal of Informetrics, 9(3), 577–590.

    Google Scholar 

  • Coleman, J. S. (1988). Social capital in the creation of human capital. American Journal of Sociology, 94, 95–120.

    Google Scholar 

  • D’Angeac, G. D. (2013). Big data, analytics and the path from insights to value. MIT Sloan Management Review, 52, 21–32.

    Google Scholar 

  • Davenport, T. H., Barth, P., & Bean, R. (2012). How 'big data' is different (Article). Mit Sloan Management Review, 54(1), 43–46. <Go to ISI>://WOS:000309249800010.

  • Dean, L., Johan, K., & Garry, R. (2013). Exponential random graph models for social networks: Theories, methods and applications. Social Networks, 31(1), 12–25.

    Google Scholar 

  • Du, D., Li, A., & Zhang, L. (2014). Survey on the applications of big data in Chinese real estate enterprise. Procedia Computer Science, 30, 24–33.

    Google Scholar 

  • Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analysis. National Science Review, 1(2), 293–314.

    Google Scholar 

  • Geldes, C., Felzensztein, C., Turkina, E., & Durand, A. (2015). How does proximity affect interfirm marketing cooperation? A study of an agribusiness cluster. Journal of Business Research, 68(2), 263–272.

    Google Scholar 

  • George, G., Haas, M. R., & Pentland, A. (2014). Big data and management: From the editors. Academy of Management Journal, 57(2), 321–326.

    Google Scholar 

  • George, G., Osinga, E. C., Lavie, D., & Scott, B. A. (2016). Big data and data science methods for management research. Academy of Management Journal, 59(5), 1493–1507. https://doi.org/10.5465/amj.2016.4005

    Article  Google Scholar 

  • Giuliani, E. (2013). Network dynamics in regional clusters: Evidence from Chile. Research Policy, 42(8), 1406–1419.

    Google Scholar 

  • Gnyawali, D. R., & Park, B.-J.R. (2011). Co-opetition between giants: Collaboration with competitors for technological innovation. Research Policy, 40(5), 650–663.

    Google Scholar 

  • Gnyawali, D. R., & Park, B. J. R. (2010). Co-opetition and technological innovation in small and medium-sized enterprises: A multilevel conceptual model. Journal of Small Business Management, 47(3), 308–330.

    Google Scholar 

  • Goodreau, S. M. (2007). Advances in exponential random graph (p*) models applied to a large social network. Social Networks, 29(2), 231–248.

    Google Scholar 

  • Goodreau, S. M., Kitts, J. A., & Morris, M. (2009). Birds of a feather, or friend of a friend? Using exponential random graph models to investigate adolescent social networks. Demography, 46(1), 103–125.

    Google Scholar 

  • Guan, J., Zhang, J., & Yan, Y. (2015). The impact of multilevel networks on innovation. Research Policy, 44(3), 545–559.

    Google Scholar 

  • Gulati, R. (1999). Network location and learning: The influence of network resources and firm capabilities on alliance formation. Strategic Management Journal, 20(5), 397–420.

    Google Scholar 

  • Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). Statnet: Software tools for the representation, visualization, analysis and simulation of network data. Journal of Statistical Software, 24(1), 1548.

    Google Scholar 

  • Hansen, M. T. (1999). The search-transfer problem: The role of weak ties in sharing knowledge across organization subunits. Administrative Science Quarterly, 44(1), 82–111.

    Google Scholar 

  • Harris, J. K. (2013a). An introduction to exponential random graph modeling. An introduction to exponential random graph modeling.

  • Harris, J. K. (2013b). An introduction to exponential random graph modeling. Sage Publications.

  • He, X. J., Dong, Y. B., Wu, Y. Y., Jiang, G. R., & Zheng, Y. (2019). Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models (Article). Physica a-Statistical Mechanics and Its Applications, 514, 443–457. https://doi.org/10.1016/j.physa.2018.09.062

    Article  Google Scholar 

  • He, Y. L., Liu, J. N. K., Hu, Y. X., & Wang, X. Z. (2015). OWA operator based link prediction ensemble for social network. Expert Systems with Applications an International Journal, 42(1), 21–50.

    Google Scholar 

  • Hey, T., Tansley, S., & Tolle, K. (2009). The fourth paradigm: Data-intensive scientific discovery. Proceedings of the IEEE, 99(8), 1334–1337.

    Google Scholar 

  • Hunter, D. R. (2007). Curved exponential family models for social networks. Social Networks, 29(2), 216–230.

    Google Scholar 

  • Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). ergm: A package to fit, simulate and diagnose exponential-family models for networks. Journal of statistical software, 24(3), nihpa54860-nihpa54860. <Go to ISI>://MEDLINE:19756229.

  • Inkpen, A. C., & Tsang, E. W. K. (2005). Social capital, networks, and knowledge transfer. Academy of Management Review, 30(1), 146–165.

    Google Scholar 

  • Islam, N., & Ozcan, S. (2013). Nanotechnology innovation system: an empirical analysis of the emerging actors and collaborative networks (Article). Ieee Transactions on Engineering Management, 60(4), 687–703. https://doi.org/10.1109/tem.2013.2265352

    Article  Google Scholar 

  • Jin, X., Wah, B. W., Cheng, X., & Wang, Y. (2015). Significance and challenges of big data research. Big Data Research, 2(2), 59–64.

    Google Scholar 

  • Karwa, V., Slavković, A. B., & Krivitsky, P. (2014). Differentially private exponential random graphs. Lecture Notes in Computer Science, 8744, 143–155.

    Google Scholar 

  • Kong, X., Feng, M., & Wang, R. (2015). The current status and challenges of establishment and utilization of medical big data in China. European Geriatric Medicine, 6(6), 515–517.

    Google Scholar 

  • Kshetri, N. (2016). Big data’s role in expanding access to financial services in China. International Journal of Information Management, 36(3), 297–308.

    Google Scholar 

  • Kwon, O., Lee, N., & Shin, B. (2014). data quality management, data usage experience and acquisition intention of big data analytics. International Journal of Information Management, 34(3), 387–394.

    Google Scholar 

  • Luke, D. A., & Stamatakis, K. A. (2012). Systems science methods in public health: dynamics, networks, and agents. Annual Review of Public Health, 33(1), 357–376.

    Google Scholar 

  • Ma, D., Zhang, Y.-R., & Zhang, F. (2020). The Influence of network positions on exploratory innovation: An empirical evidence from China’s patent analysis. Science Technology and Society, 25(1), 184–207. https://doi.org/10.1177/0971721819890045

    Article  Google Scholar 

  • Mazzola, E., Perrone, G., & Kamuriwo, D. S. (2015). Network embeddedness and new product development in the biopharmaceutical industry: The moderating role of open innovation flow. International Journal of Production Economics, 160, 106–119. https://doi.org/10.1016/j.ijpe.2014.10.002

    Article  Google Scholar 

  • Mcafee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 61–67.

    Google Scholar 

  • Mcpherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444.

    Google Scholar 

  • Mitchell, W., & Singh, K. (1992). Incumbents’ use of pre-entry alliances before expansion into new technical subfields of an industry. Journal of Economic Behavior & Organization, 18(3), 347–372.

    Google Scholar 

  • Morris, M., Handcock, M. S., & Hunter, D. R. (2008). Specification of exponential-family random graph Models: terms and computational aspects. Journal of statistical software, 24(4), 1548–7660. <Go to ISI>://MEDLINE:18650964.

  • Obstfeld, D. (2005). Social networks, the tertius iungens orientation, and involvement in innovation. Administrative Science Quarterly, 50(1), 100–130.

    Google Scholar 

  • Pan, X., Pan, X., Ai, B., & Guo, S. (2020). Structural heterogeneity and proximity mechanism of China’s inter-regional innovation cooperation network. Technology Analysis & Strategic Management. https://doi.org/10.1080/09537325.2020.1740193

    Article  Google Scholar 

  • Peng, T.-Q. (2015). Assortative mixing, preferential attachment, and triadic closure: A longitudinal study of tie-generative mechanisms in journal citation networks. Journal of Informetrics, 9(2), 250–262.

    Google Scholar 

  • Prescott, M. E. (2016). Big data: Innovation and competitive advantage in an information media analytics company. Journal of Innovation Management, 4(1), 92.

    Google Scholar 

  • Quintana-Garcia, C., & Benavides-Velasco, C. A. (2004). Cooperation, competition, and innovative capability: A panel data of European dedicated biotechnology firms. Technovation, 24(12), 927–938. https://doi.org/10.1016/s0166-4972(03)00060-9

    Article  Google Scholar 

  • Ritala, P., & Hurmelinna-Laukkanen, P. (2013). Incremental and radical innovation in coopetition—The role of absorptive capacity and appropriability. Journal of Product Innovation Management, 30(1), 154–169.

    Google Scholar 

  • Robins, G. (2007). Social networks, exponential random graph (p *) models for. Social Networks, 29(2), 192–215.

    Google Scholar 

  • Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p*) models for social networks. Social Networks, 29(2), 173–191.

    Google Scholar 

  • Saraswathi, D., Kathiravan, A. V., & Anita, S. (2011). A novel approach for combating spamdexing in web using UCINET and SVM light tool. International Journal of Innovative Technology and Creative Engineering .v1, (3), 47–52.

  • Sarker, M. N. I., Min, W., & Hossin, M. A. (2018) 'Smart governance through bigdata: Digital transformation of public agencies' In 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD).

  • Sheng, J., Amankwah-Amoah, J., & Wang, X. (2017). A multidisciplinary perspective of big data in management research. International Journal of Production Economics, 191, 97–112.

    Google Scholar 

  • Song, M., Zhang, H., & Heng, J. (2020). Creating Sustainable innovativeness through big data and big data analytics capability: From the perspective of the information processing theory. Sustainability, 12, 1984.

    Google Scholar 

  • Tan, K. H., Zhan, Y., Ji, G., Ye, F., & Chang, C. (2015). Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. International Journal of Production Economics, 165, 223–233.

    Google Scholar 

  • Khanna, T., Gulati, R., Nitin, N., et al. (1998). The dynamics of learning alliances: Competition, cooperation, and relative scope. Strategic Management Journal, 19(3), 193–210.

    Google Scholar 

  • Team, C. R. (2015). R: A language and environment for statistical computing.

  • Tu, C., He, X., Shuai, Z., & Jiang, F. (2017). Big data issues in smart grid - A review. Renewable & Sustainable Energy Reviews, 79, 1099–1107.

    Google Scholar 

  • Uzzi, B. (1997). Social structure and competition in interfirm networks: The paradox of embeddedness. Administrative Science Quarterly, 42(1), 35–67.

    Google Scholar 

  • Windzio, M., Teney, C., & Lenkewitz, S. (2021). A network analysis of intra-EU migration flows: How regulatory policies, economic inequalities and the network-topology shape the intra-EU migration space. Journal of Ethnic and Migration Studies, 47(5), 951–969. https://doi.org/10.1080/1369183x.2019.1643229

    Article  Google Scholar 

  • Wu, J. (2014). Cooperation with competitors and product innovation: Moderating effects of technological capability and alliances with universities. Industrial Marketing Management, 43(2), 199–209. https://doi.org/10.1016/j.indmarman.2013.11.002

    Article  Google Scholar 

  • Zhao, L., Zhang, H., & Wu, W. (2019). Cooperative knowledge creation in an uncertain network environment based on a dynamic knowledge supernetwork. Scientometrics, 119(2), 657–685. https://doi.org/10.1007/s11192-019-03049-4

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Number 71874040); The Heilongjiang Province Social Science Foundation Project (Grant Number 18JYB144); The Heilongjiang Province think-tank project (Grant Number G093118002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomeng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Yang, X., Qu, S. et al. Research on the formation mechanism of big data technology cooperation networks: empirical evidence from China. Scientometrics 127, 1273–1294 (2022). https://doi.org/10.1007/s11192-022-04270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-022-04270-4

Keywords

Navigation