Skip to main content
Log in

Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The article considers Bayesian analysis of hierarchical models for count, binomial and multinomial data using efficient MCMC sampling procedures. To this end, an improved method of auxiliary mixture sampling is proposed. In contrast to previously proposed samplers the method uses a bounded number of latent variables per observation, independent of the intensity of the underlying Poisson process in the case of count data, or of the number of experiments in the case of binomial and multinomial data. The bounded number of latent variables results in a more general error distribution, which is a negative log-Gamma distribution with arbitrary integer shape parameter. The required approximations of these distributions by Gaussian mixtures have been computed. Overall, the improvement leads to a substantial increase in efficiency of auxiliary mixture sampling for highly structured models. The method is illustrated for finite mixtures of generalized linear models and an epidemiological case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitkin, M.: A general maximum likelihood analysis of overdispersion in generalized linear models. Stat. Comput. 6, 251–262 (1996)

    Article  Google Scholar 

  • Albert, J.H., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88, 669–679 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, Chichester (1994)

    Book  MATH  Google Scholar 

  • Besag, J., York, J.C., Mollié, A.: Bayesian image restoration with two applications in spatial statistics (with discussion). Ann. Inst. Stat. Math. 43, 1–59 (1991)

    Article  MATH  Google Scholar 

  • Chiogna, M., Gaetan, C.: Dynamic generalized linear models with application to environmental epidemiology. Appl. Stat. 51, 453–468 (2002)

    MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L., Steinert, S.: A geoadditive Bayesian latent variable model for Poisson indicators. Technical Report, Department of Statistics, University of Munich (2006)

  • Frühwirth-Schnatter, S.: Finite Mixture and Markov Switching Models. Springer Series in Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  • Frühwirth-Schnatter, S., Frühwirth, R.: Auxiliary mixture sampling with applications to logistic models. Comput. Stat. Data Anal. 51, 3509–3528 (2007)

    Article  MATH  Google Scholar 

  • Frühwirth-Schnatter, S., Wagner, H.: Auxiliary mixture sampling for parameter-driven models of time series of small counts with applications to state space modeling. Biometrika 93, 827–841 (2006a)

    Article  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter, S., Wagner, H.: Data augmentation and Gibbs sampling for regression models of small counts. Student 5, 221–234 (2006b). Also Research Report IFAS 2004-04, available at http://www.ifas.jku.at/

    Google Scholar 

  • Frühwirth-Schnatter, S., Wagner, H.: Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling. Comput. Stat. Data Anal. 52, 4608–4624 (2008)

    Article  MATH  Google Scholar 

  • Geyer, C.: Practical Markov chain Monte Carlo. Stat. Sci. 7, 473–511 (1992)

    Article  Google Scholar 

  • Gschlößl, S., Czado, C.: Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler? Comput. Stat. Data Anal. 52, 4184–4202 (2005)

    Article  Google Scholar 

  • Held, L., Natario, I., Fenton, S., Rue, H., Becker, N.: Towards joint disease mapping. Stat. Methods Med. Res. 14, 61–82 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Held, L., Graziano, G., Frank, C., Rue, H.: Joint spatial analysis of gastrointestinal infectious diseases. Stat. Methods Med. Res. 15, 465–480 (2006)

    MathSciNet  Google Scholar 

  • Hilbe, J.M.: Negative Binomial Regression. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  • Holmes, C.C., Held, L.: Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Anal. 1, 145–168 (2006)

    Article  MathSciNet  Google Scholar 

  • Hurn, M., Justel, A., Robert, C.P.: Estimating mixtures of regressions. J. Comput. Graph. Stat. 12, 55–79 (2003)

    Article  MathSciNet  Google Scholar 

  • Kass, R.E., Carlin, B., Gelman, A., Neal, R.: Markov chain Monte Carlo in practice: a roundtable discussion. Am. Stat. 52, 93–100 (1998)

    Article  MathSciNet  Google Scholar 

  • Knorr-Held, L., Raßer, G.: Bayesian detection of clusters and discontinuities in disease maps. Biometrics 56, 13–21 (2000)

    Article  MATH  Google Scholar 

  • Knorr-Held, L., Rue, H.: On block updating in Markov random field models for disease mapping. Scand. J. Stat. 29, 597–614 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • LeSage, J.P., Fischer, M.M., Scherngell, T.: Knowledge spillovers across Europe: evidence from a Poisson spatial interaction model with spatial effects. Pap. Reg. Sci. 86, 393–421 (2007)

    Article  Google Scholar 

  • McFadden, D.: Conditional logit analysis of qualitative choice behaviour. In: Zarembka, P. (ed.) Frontiers of Econometrics, pp. 105–142. Academic, New York (1974)

    Google Scholar 

  • McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley Series in Probability and Statistics. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  • Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    MATH  Google Scholar 

  • Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer Series in Statistics. Springer, New York (1999)

    Google Scholar 

  • Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability, vol. 104. Chapman & Hall/CRC, London (2005)

    MATH  Google Scholar 

  • Scott, S.L.: Data augmentation and the Bayesian analysis of multinomial logit models. Stat. Pap., (2008, accepted for publication)

  • Tüchler, R.: Bayesian variable selection for logistic models using auxiliary mixture sampling. J. Comput. Graph. Stat. 17, 76–94 (2008)

    Article  Google Scholar 

  • Viallefont, V., Richardson, S., Green, P.J.: Bayesian analysis of Poisson mixtures. J. Nonparametric Stat. 14, 181–202 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Frühwirth-Schnatter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frühwirth-Schnatter, S., Frühwirth, R., Held, L. et al. Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data. Stat Comput 19, 479 (2009). https://doi.org/10.1007/s11222-008-9109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-008-9109-4

Keywords

Navigation